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Abstract

Learning in real life is never as simple as forming stimulus-response mappings. It

involves identifying the current context (i.e., relevant information for task at hand),

figuring out the transition between contexts, and learning about complex relationships

and rules. In this dissertation, I study how animals and humans learn to discover such

structures in decision tasks. I begin by demonstrating the importance of studying

structure or representation learning. In Chapter 2, I show that rats do not form

the optimal task representation in an odor-guided decision task, even after extensive

training. This suggests that we cannot assume a task representation without testing

it. It also raises the following questions: How is a task representation learned? What

factors may affect such learning? In the rest of this dissertation, I use two tasks to

study these questions with animals and humans. In Chapter 3, I propose a latent-

cause inference model to explain fear extinction in rats. This model characterizes

how animals make inference about the underlying causes that generate observations

(e.g., shocks) and how the causes may change over time. It explains why gradually

reducing shock frequency is more effective in extinguishing fear than the standard

extinction procedure, by demonstrating how different procedures lead to the learning

of distinct underlying task structures. In Chapter 4, I study how humans actively

learn about multi-dimensional rules with probabilistic feedback. I show that people

use both value-based and rule-based learning systems, and trade off them based on the

instructed task complexity. This study sheds light on how humans make strategic use

of cognitive resource when learning complex task structures. In Chapter 5, I propose

a novel approach to study representation learning with recurrent neural networks

(RNNs). I demonstrate that RNNs can be useful for developing better cognitive

models and identifying cognitive differences across individuals. In the Conclusion, I

summarize the findings from the above studies, and discuss common principles that

underlie animal and human representation learning.
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Chapter 1

Introduction
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Learning to acquire reward and avoid punishment is a ubiquitous task for animals

and human beings. There have been extensive empirical and theoretical studies of this

learning process: early experimentalists characterized it as acquiring the association

between a stimulus (or action) and positive or negative outcomes [1, 2]; later theoret-

ical work formulated learning as driven by error signals comparing expectation and

outcomes [3], with robust neural underpinnings in the midbrain dopaminergic system

[4, 5].

1.1 Introducing “state” and state representation

In real life, however, learning is rarely as simple as evaluating how good a stimulus

or action is in an absolute sense. Context is critical in learning: the outcome of

actions often depends on the context, and actions may in turn change the context.

In reinforcement learning theory, context is often termed a “state”; it comprises of

everything in the environment that is relevant to the agent’s current decision. For

example, when foraging for a tasty croissant at Little Chef Pastry Shop in downtown

Princeton, I would go on different routes if I leave from home (south of Princeton

town), or if I just finished my morning run in the woods up north. In this foraging

task, the task “state” would consist of my current location. It determines what

action (moving direction) I should take, and the actions subsequently transition me

into new states (locations). State information can be local (my current location)

or more global (I am on my way to get a croissant), with some aspects perceptually

available in the immediate surrounds, while others are more circumstantial or internal

(e.g., my current goal, or the time of day – croissants are often sold out before noon,

so I should avoid going later in the day). The state in reinforcement learning should

ideally include all such information, as long as it is relevant for decision making.
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All task states (and the transitions between them, if available) together form a

“state representation”. State representations serve as the foundation for learning

what stimuli to approach or avoid and what actions to take. Given a state repre-

sentation, we can use reinforcement learning theory [6] (e.g., Bellman Equations [7]

and dynamic programming for model-based reinforcement learning, or trial-and-error

learning from prediction errors for model-free reinforcement learning [8]) to derive the

decision policy and make predictions about the agents’ behavior. In the croissant-

foraging example, this equates to having a map of the Princeton area, and figuring

out the path from my starting point to the pastry shop.

It has been widely shown that animals and humans can solve decision tasks by

utilizing the knowledge of states and state representations. They are able to identify

the relevant information for task at hand: not only the predictors for reward, but

also what information is irrelevant and what scenarios can be treated as the same

despite perceptual differences [9, 10]. In tasks with multiple states and transitions,

animals and humans are able to acquire complex task representations. For example,

it was first proposed by Tolman [11] that animals form “cognitive maps” (mental

representation of the physical maps) of their environments in navigation tasks. This

idea was later supported by neural findings of place cells in hippocampus [12] and grid

cells in the entorhinal cortex, providing the neural basis for mental representation.

Similarly, humans have been shown to use knowledge of task structures in decision

tasks that have complex transition structures [13] or require multi-step planning [14].

Neurally, task representation has been found to be encoded in the entorhinal cortex

and orbitalfrontal cortex in both rodents and humans [15, 16, 13].
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1.2 Representation learning: what is it and impor-

tant questions to study

Despite the rich findings on the use of state representations in decision tasks, it is

less known how these representations are learned by animals and humans, which we

term “representation learning”.

Although spatial navigation is a good example of using task representations, rep-

resentation learning is not limited to forming cognitive maps – it is useful in a wide

range of decision scenarios. In this dissertation, I primarily focus on the learning of

states. The definition of states can sometimes be trivial, especially in tasks where

each state is uniquely signalled by a specific stimulus, or a particular coordinate on a

map. However, real life decision scenarios are often more complicated. In some cases,

states are unobservable, and the agent needs to figure out how to group individual

experiences into clusters (hidden states) to guide decisions. In other cases, there is

abundant (and potentially redundant) information, and the agent needs to identify

the relevant subset of factors that define the states, which can be hard due to the

combinatorial explosion of the factors.

So far, the study of representation learning has often focused on individual learn-

ing scenarios. The question remains whether there exist common mechanisms for the

underlying cognitive and neural processes. This is not only important for cognitive

science and neuroscience, but also relevant for artificial intelligence, which currently

excels at solving individual complex tasks [17, 18] but suffers from lack of general-

izability (but see [19, 20]). Similarly, it is worth developing general computational

approaches to studying representation learning.
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1.3 Aims of dissertation and overview of chapters

The aims of this dissertation are three-fold: (a) to demonstrate the importance of

studying representation learning; (b) to make progress in understanding the compu-

tational mechanisms that underlie representation learning processes; (c) to propose

useful computational approaches for representation-learning studies.

In Chapter 2, I will begin by demonstrating the importance of studying represen-

tation learning. Research investigating learning and decision making often assumes

that animals and humans use the correct state representation for a given task, i.e.,

the representation that accords with the true generative model of the task or envi-

ronment. However, this assumption may not be true. For example, some roads on

the Princeton campus do not allow non-university vehicles to drive through, yet a

newcomer to Princeton may not have such knowledge and thus may form an incor-

rect map for croissant-foraging. It is therefore important to examine the actual task

representation used by the decision maker. In this chapter, I study how rats perform

and represent a seemingly-simple odor-guided choice task. By comparing the pre-

dictions of several reinforcement-learning models with various state representations

to animals’ behavioral data, I show that rats do not use the most parsimonious task

representation as designed by the experimenters. I also examine how their representa-

tions change over time and show that representation learning is a very slow process in

this task, potentially explaining animals’ sub-optimal representation even after exten-

sive training. These findings demonstrate the importance of carefully examining the

state representation held by experimental subjects, as well as the value of studying

how representation may change over time through experience.

Next, I study how animals and humans acquire state representations. Specifically,

I study how they learn to group individual experiences into latent states (Chapters

3), and how they learn to identify relevant information for current task (Chapter 4).
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One way to think about a state is that it is a grouping of similar (but slightly dif-

ferent) experiences so that they can be treated similarly in decision making (i.e., the

same policy can be used in all of those situations) and learning from one situation can

be applied to the other. For instance, when deciding where to have lunch on campus,

after seeing certain cafes always having the same daily menus, you may be able to

infer that they share the same caterer, which can help reduce the number of options

and simplify decisions. These states are unobservable, and it is up to the learner

to figure out how to group individual experiences into hidden states that are useful

for guiding decisions. In Chapter 3, I study the learning of latent states in fear ex-

tinction experiments with rats. Gershman and colleagues [21] showed that extinction

of previously acquired fear was more effective with a gradual extinction procedure,

where the frequency of an aversive stimulus (there, shock) was reduced gradually over

time, compared to the standard extinction procedure where no shock was delivered,

or a gradual reverse procedure where shock frequency increased instead. These phe-

nomena can be explained by a latent-cause inference theory in which animals form

a rich model of the environment, inferring what underlying causes generate distinct

experiences with shocks, and treating these causes as states. Building on such theory,

I further demonstrate with a computational model that animals’ inference process

relies on their understanding of a dynamic environment: old causes become less likely

to reoccur later on, and the tendency for a shock to appear may change over time.

Additionally, I show that animals consider multiple possibilities during their infer-

ence on latent causes, but only keep the most likely one after long delays. This work

provides a quantitative account on how animals learn latent states through inferring

the unobservable structure of a task.

When there is redundant information in a decision task, the learner needs to figure

out the relevant subset of factors for decision. For example, learning to pick the

best coffee beans requires identifying which factors may determine its flavor: brand,
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package design, country of origin, level of roast, etc. In Chapter 4, I study such

learning in humans with a multi-dimensional probabilistic learning task where the

underlying rule for reward depends on an unknown subset of dimensions. I show that

people combine rule-based and value-based strategies in learning: they serially test

hypotheses about the underlying rule, and simultaneously learn the value of individual

factors that comprise rules, which helps form better hypotheses for later testing. The

integration of the two learning strategies is sensitive to task complexity: when rules

are known to be low-dimensional (and hence simpler), people do more hypothesis-

testing; whereas when rules are more complex (high-dimensional), learning values is

more efficient than sequentially testing many possibilities, and people indeed rely more

on value learning. These results suggest that humans can sensibly choose between

representation learning strategies based on their costs and benefits.

Then, in Chapter 5, I propose a novel computational approach for studying rep-

resentation learning using recurrent neural networks (RNNs). Compared to simpler

reward-learning tasks (e.g., multi-armed bandit tasks) where the cognitive mech-

anisms are relatively well-understood and characterized by existing computational

models (e.g., reinforcement learning models), representation-learning tasks are often

more complex, with little consensus on the underlying cognitive processes, making it

hard to evaluate how good a model is in capturing learning behavior. Thus, it can be

useful to apply RNNs (which are flexible general function approximators, although

less interpretable) to fit behavior: RNNs can set targets for developing cognitive

models, and help identify room for improvement. With network embedding analy-

ses, RNNs can also reveal potential cognitive variability across individuals. In this

chapter, I apply RNNs to the rule-learning task reported in Chapter 4, use them to

predict participants’ choice behavior, and demonstrate the utility of this approach.

Lastly, in Chapter 6 (Conclusion), I summarize all the findings and their implica-

tions, and lay out clearly the contributions of this dissertation. I end with a discussion
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of common cognitive principles underlying animal and human representation learn-

ing, revealed by the above studies, as well as the computational approaches that are

broadly useful in this field of research.
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Chapter 2

Learners may not acquire the

optimal task representation

The contents of this chapter were submitted for publication in: Mingyu Song, Yuji

K. Takahashi, Amanda C. Burton, Matthew R. Roesch, Geoffrey Schoenbaum, Yael

Niv, and Angela J. Langdon. Minimal cross-trial generalization in learning the rep-

resentation of an odor-guided choice task.

All data and code are available at https://github.com/mingyus/.
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2.1 Introduction

Much knowledge of the world is acquired not from instructions, but through observa-

tions and inference. For example, you might choose which campus cafeteria to visit

by checking their daily menus. Eventually, you may realize that cafeterias A and B

have the same menu (unbeknownst to you, they are run by the same caterer). This

implicit knowledge allows you to apply whatever you learn about one dining location

to the other: upon hearing that cafeteria A is serving your favorite dish, you can get

it at the close-by cafeteria B.

Acquiring such knowledge can be considered as learning the structure of a task,

or in reinforcement learning (RL) terminology, learning a state representation for

the task [22, 23, 24]. A state representation forms the basis upon which values

(expectations about future rewards) and policies (rules for action in different settings)

can be learned [25]. In tasks in which different settings (e.g., cafeteria A or B) lead

to the same outcome (the same dishes on the menu), the state representation for A

and B can be shared. The benefit of this is two-fold: first, it allows compression of

state representations, excluding irrelevant variation and thus reducing the complexity

of the learning problem. Second, it accelerates learning as only a single experience

of a tasty salad in cafeteria A is required in order to exploit that knowledge in both

locations. While a range of alternative state representations can support learning in

any given setting, one that matches the “true” underlying structure of a task supports

efficient learning and accurate task performance.

The challenge for a learner to build an appropriate state representation is partic-

ularly acute when there is no explicit instruction on the “rules” for solving a task.

This occurs by necessity in experiments on non-human animals, in which subjects

are trained solely through ongoing experience. Experimenters know the ground-truth

structure of a task, and often assume the subjects understand it similarly. However,

even relatively simple tasks may be represented in a multitude of ways, often with
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only subtle differences in overt behavioral performance. Despite rapid progress in the

development of artificial learning algorithms that can extract appropriately abstract

task representations from reinforcement [26, 27, 28, 29], it remains unknown how an-

imals form a state representation solely through their experience of stimuli, rewards

and the contingency of each of these on their actions. In particular, it is an open

question how animals might generalize their learning about upcoming rewards across

distinct features of experience, thereby building a concise state representation of a

task.

2.2 Results

We directly tested the extent of generalization in learned state representations that

guide choice behavior in an odor-guided decision-making task in rats [30]. Rats were

trained to sample an odor at a central odor port, before responding at one of two

fluid wells (Figure 2.1A). The odor stimulus provided a cue for which of two wells

would be baited with a sucrose reward. Two odors signalled “forced choice” trials, one

indicating reward will be available in the left well, and one indicating the right well. In

either case, choosing the unrewarded well terminated the trial immediately. A third

odor—“free choice”—indicated reward will be available in either well. Importantly,

if a “valid” well were chosen on any trial (i.e., the rewarded well on forced-choice

trials, or either well on free-choice trials), the delay to and amount of reward was

determined by the side of the well, not the odor. Unsignaled to the animal, in each

block of the task, one well delivered a “better” reward outcome, either at a shorter

delay or a larger amount than the other well; reward contingencies changed between

blocks during a session (see Figure 2.1B for details).

Because of the shared reward setting across odors, it would be beneficial for the an-

imal to acquire a representation of the task in which learning from valid forced-choice

11
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Figure 2.1: The odor-guided choice task and animals’ behavior. (A) The
experiment apparatus included an odor port and two fluid wells where rewards were
delivered. To start each trial, the animal first poked into the odor port; after 0.5
seconds, one of three odors was delivered, signaling the current trial type. One odor
signaled a left forced-choice trial, another a right forced-choice trial, and a third
indicated free choice between left and right wells. After odor offset, the animal could
make a choice by entering either the left or right fluid wells. Reward was delivered if
they made the correct choice on a forced-choice trial and as long as they successfully
made one of the choices on a free-choice trial. (B) Block sequence in an example
session. Sessions always started with two “delay blocks” (blocks 1 and 2), followed by
two “magnitude blocks” (blocks 3 and 4). In block 1, the “short” reward (delivered
0.5s after well entry) was available in one well and the “long” reward (delivered 1-7s
after well entry) in the other; the reward contingency switched between the wells
on block 2. In block 3, “long” reward then changed to “big” reward (two sucrose
drops delivered 0.5s after well entry), while “short” reward stayed the same but is
now referred to as “small” reward (one sucrose drop) in comparison to the alternative;
these reward contingencies were switched again on block 4. The well that was initiated
with the better (short) reward option was randomized across sessions. (C) Learning
curves for forced-choice (red) and free-choice (blue) trials. The curves are aligned to
block-switch points (gray dashed lines), with the first and last 10 trials of each block
shown. Accuracy is evaluated as the percentage of trials the animal chose the better
option for that trial type (forced-choice trials: the rewarded well; free-choice trials:
the well with reward at shorter delay or larger amount). Shaded areas represent 1
s.e.m across animals (N = 22). (D) Coefficients of a hierarchical logistic regression
predicting the accuracy of the first free-choice trial after a previous incorrect free-
choice as a function of the number of intervening correct forced-choice trials. Left
(error bars): coefficients for individual animals, ordered by dataset, with error bars
representing 95% highest posterior density interval (HDI). Right (histogram): the
posterior distribution of the group mean, with dashed lines representing 95% HDI.
At both individual and group levels, 95% HDI of the coefficients overlapped with
zero, suggesting that there was minimal generalization of learning from correct forced-
choice trials to subsequent free-choice trials.
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trials generalizes to the same well location in free-choice trials. This representation

aligns with the underlying generative structure of the task, and would support faster

learning when reward contingencies change between blocks.

To study how rats interpret the structure of this odor-guided choice task, we

collated behavior from several experiments using the same behavioral paradigm [31,

32, 33]. On average, across sessions, rats learned to choose the well with the better

reward on free-choice trials within each block, while maintaining high choice accuracy

on forced-choice trials throughout the session (Figure 2.1C). To determine whether

rats learned to choose the better option on free-choice trials by generalizing from

rewards delivered on forced-choice trials (and not from experience in free-choice trials

alone), we first performed a behavioral analysis. If animals had knowledge of the

shared reward setting, reward outcomes in valid forced-choice trials should provide

information about the reward available in the two wells, and as a result, improve

performance on subsequent free-choice trials. We therefore conducted a hierarchical

logistic regression predicting the accuracy of free-choice trials as a function of how

many rewarded forced-choice trials the animal had experienced since the last incorrect

free-choice trial (i.e., the last time they chose the worse well). A positive coefficient

would indicate use of forced-choice experience to inform free-choice decisions. We

did not find evidence for such signature of generalization (Figure 2.1D), either at

the group level (95% highest posterior density interval (HDI) of the group mean

of the coefficient: [-0.022, 0.035]), or for individual animals (95% HDI of individual

coefficients all include zero). Adding trial index in the block as an additional regressor

(to account for the increase in accuracy over each block) did not change the results.

To examine the extent of generalization more directly, we constructed a series of

reinforcement learning (RL) models with different state representations of the task

(Figure 2.2), and tested how well these alternative models could predict the trial-by-

trial choice behavior for each animal. In all models, animals learned the values of
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Figure 2.2: State representations of RL models. (A) The four-state model:
free-choice trials and correct forced-choice trials share the same “Left” and “Right”
states; “Right-NoRwd” and “Left-NoRwd” are the corresponding states for incorrect
forced-choice trials. This is the true structure of the task as designed by the experi-
menters, as the same reward was available in forced-choice trials and free-choice trials
if a correct choice was made. (B) The six-state model: each of the three odors leads
to one of two states for left and right choices, with no generalization across odors. (C)
The hybrid-value model: this model uses both the four-state and six-state repre-
sentations (with a total of 10 states), with state values combined using weights w4 and
(1−w4) (illustrated as vertical boxes). (D) The hybrid-learning model: the same
state representation and learning rule (green arrows, with learning rate η) as in the
six-state model, with additional generalization (orange arrows, with generalization
rate ηg) between states representing valid forced choices and free choices. For sim-
plicity, shown here only half of the learning and generalization updates (when reward
is delivered in Left-Forced and Right-Free states), each representing generalization
from forced-choice states to free-choice states or vice versa; the same rules apply to
Right-Forced and Left-Free states. Boxes in white and gray represent rewarded and
unrewarded states, respectively.
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left and right actions for each odor through trial and error, choosing actions by com-

paring their values, with some decision noise (see Supplementary Methods). What

differed between the models was the assumed state representation, i.e., whether and

how learning generalized across odors. The four-state model assumed full general-

ization between valid responses on forced-choice trials and corresponding responses

on free-choice trials, with shared states between them; this model correctly reflects

the generative structure of the task. The six-state model assumed no generalization

between trial types, with separate states based on odor and action. We also consid-

ered two hybrid models to probe for partial generalization: the hybrid-value model

combined values from the four-state and six-state representations at decision time,

with a relative weight parameter w4. Finally, the hybrid-learning model assumed six

states, but generalized across two pairs of states (“Left-Forced” and “Left-Free”; and

similarly for right choices) with a generalization rate ηg.

The free parameters of each model were fit to choice data from all animals using

hierarchical Bayesian inference with Markov Chain Monte Carlo (MCMC) sampling

[34, 35]. We evaluated model fits using the Watanabe–Akaike information criterion

(WAIC; Figure 2.3A, lower values indicate better fits to data) [36]. Model compar-

ison showed clear evidence for the six-state model, which out-performed the four-

state model with a WAIC score that was 1211 ± 78 (mean ± standard error across

samples [37]) lower. The hybrid models were only slightly better than the six-state

model (WAIC difference: −134 ± 24 for the hybrid-value model, and −53 ± 17 for

the hybrid-learning model), suggesting little engagement of the four-state represen-

tation. Posterior estimates of the parameter values for the hybrid models revealed

the dominance of the six-state representation: in the hybrid-value model, posterior

estimates showed that the weight parameter w4 was smaller than 0.5 (equal reliance

on the six- and four-state representations) both at the group level (95% HDI of group

mean: [0.05, 0.28]; Figure 2.3B) and for all but one rat (Figure 2.3E). Similarly, in
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the hybrid-learning model, the learning rate η was an order of magnitude higher than

the generalization rate ηg (95% HDI for group mean η : [0.22, 0.28], ηg : [0, 0.01];

Figure 2.3C). In fact, most rats had a generalization rate close to zero (Figure 2.3D).

These results indicate that, at the group level, rats did not acquire knowledge of the

shared reward contingencies between valid forced-choice trials and free-choice trials,

consistent with the earlier behavioral analysis. Instead, most rats appeared to learn

about the two trial types separately.

Interestingly, we found marked heterogeneity in model fits at the individual level.

Although for most animals the hybrid models did not predict choice better than

the six-state model, for a subset of rats, model comparison indicated some degree of

generalization (i.e., individual ∆WAIC of hybrid compared to the six-state model was

negative; Figures 2.3A and 2.4). This indicated that the extent to which the animals

recruited the four-state representation varied, which was confirmed by the span of

individual parameter estimates of the generalization rate ηg and the four-state weight

w4. Estimates of these two parameters were positively correlated at the individual

level (r = 0.82, p < .001; Figure 2.3E), indicating the consistency of the two hybrid

models. For only one animal, the four-state model fit better than the six-state model;

this rat also had w4 > 0.5 and the largest ηg value. Comparing model fit for the first

half to the second half of the behavioral sessions per individual showed the reliance on

a shared representation was slightly stronger in later sessions (assessed both through

comparison between the six-state and hybrid-value models, and the magnitude of the

w4 parameter in the hybrid-value model; Figure 2.5), suggesting generalization on

this task may have emerged with experience.

In principle, adopting a state representation that conforms to the true generative

structure of the task should afford the most efficient learning and maximum accuracy,

and thus maximize reward. To test the predicted performance of models that used

different representations, we simulated choice behavior using the hybrid-value model
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Figure 2.3: The six-state representation explains animals’ choices better
than the four-state alternative. (A) Model comparison results. Left: WAIC
difference between all four models and the six-state model for the entire dataset
(summed across all trials from all animals). Lower values indicate better model
fits. Error bars represent standard errors across samples [37]. Right: individual
differences in average WAIC per trial between all models and the six-state model.
Each marker corresponds to an individual animal, with different markers representing
different datasets (same in D and E). (B) Posterior distribution of the group mean
of four-state weight w4 in the hybrid-value model. Dashed lines represent 95% HDI.
w4 = 0 corresponds to the six-state model, and w4 = 1 corresponds to the four-state
model. (C) Posterior distribution of the group mean of learning rate η (in green) and
generalization rate ηg (in orange) in the hybrid-learning model. Dashed lines represent
95% highest density interval (HDI). Generalization is almost negligible due to the low
values of ηg. (D) Posterior mean of η and ηg for each animal. The horizontal dashed
line corresponds to the six-state model; the diagonal dashed line corresponds to the
four-state model. (E) The correlation between w4 in the hybrid-value model and ηg
in the hybrid-learning model at the individual level.
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Figure 2.4: Difference in WAIC per trial for each animal shows individual
variability. We used the six-state model as a baseline to which we compared the
four-state model (in orange), the hybrid-value model (gray) and the hybrid-learning
model (white). For the majority of animals, the four-state model fit much worse than
the six-state. However, for a small subset, the four-state model performed equally
well or even better (for rat 4) than the six-state model.

with the best-fit group-level parameters (i.e., the “average rat”; see Supplementary

Methods). Changing the weight parameter w4 from 0 (equivalent to the six-state

model) to 1 (equivalent to the four-state model) greatly accelerated learning in the

early part of each block, as information could be appropriately generalized across

trial types (Figure 2.6A). However, asymptotic accuracy at the end of a block was

only slightly improved with shared reward representation, as was also reflected in the

average reward yield in these simulations (Figure 2.6B). Indeed, despite the gains in

learning after block changes, adopting a shared reward representation only increased

reward per trial by ∼ 0.05 drops across the task. Thus, in this task at least, there was

not strong pressure to learn a task representation that closely matches the generative

structure of the environment.

2.3 Discussion

Our results showed that most rats did not use a parsimonious state representation in

the odor-guided choice task, even though, in principle, this representation could have

helped them learn faster and earn more reward. Rather than exploiting a shared
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Figure 2.5: Split-half analysis shows slow learning of the shared representa-
tion through experience. (A) On average, the hybrid-value model provided only
a modest improvement in model fit over the six-state representation in the first half of
sessions per subject, however it showed a marked improvement in model fit over the
six-state representation for the second half of sessions. (B) Most animals had very
similar∆WAIC (between hybrid-value model and six-state model; same below) in the
first and second halves; a small subset had a lower ∆WAIC in the second half, rep-
resenting an increase in use of the shared representation. Most animals had a higher
w4 in the hybrid-value model in the second half of sessions than in the first half, also
pointing towards greater generalization during the later sessions. (C) Difference in
w4 between the second and first half of sessions was correlated with the difference in
∆WAIC between the second and first half of sessions. (D) Acquisition of the shared
representation did not result in more reward gains: there was no correlation between
either ∆WAIC or w4 difference (between the second and first half) with the reward
amount difference (p = .69 and p = .21, respectively). (E) Having more task expe-
rience (more sessions performed) was not associated with a greater ∆WAIC or w4

difference (p = .16 and p = .74, respectively). Note the animals who had the largest
changes in ∆WAIC magnitude experienced very few sessions. Two animals with only
one session of data were excluded from this split-half analysis. Throughout: dataset
is coded by marker type.
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Figure 2.6: Simulations show faster learning, but a modest increase in re-
ward earned, under the four-state representation. (A) Learning curves for
free-choice trials in data simulated using the best-fit parameter values (i.e., posterior
mean of the group-level parameters) of the hybrid-value model, but setting w4 to 1 or
0 (corresponding to the four-state and six-state models, respectively). The four-state
model (w4 = 1) shows faster learning in each of the blocks and higher asymptotic
accuracy than the six-state model (w4 = 0). (B) Average amount of reward per trial
obtained by the models (dots and curve) and by animals (error bar, mean ± 1 s.e.m.).
Dots represent model-simulation results obtained with their best-fit parameter val-
ues. The colored curve represents simulation results of the hybrid-value model with
its best-fit parameters but varying w4 from 0 to 1. Average reward earned increases
with w4, but the differences are relatively small (on the order of 5%). Rats performed,
on average, in line with the six-state model and markedly worse than the four-state
model. (C) Average reward obtained by each animal is positively correlated with
their mean w4 parameter estimate (r = 0.64, p = 0.0015). Animals with a state
representation more similar to four-state earned more reward on average. Dataset
coded by marker type.
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representation between valid forced-choice and free-choice trials, most rats learned

the values of actions separately for each odor, with little to no generalization between

trial types. This finding was consistent across both behavioral analyses and more

detailed computational modeling approaches.

Why did most rats fail to exploit the shared reward structure of this task, even

though rats have been shown to acquire quite complex task representations in other

settings [38, 39, 40]? First and foremost, while the six-state representation is not as

compact as the four-state and does not capture the true generative statistics of the

task, it is sufficient to support good performance in this task: high accuracy for forced

choice trials throughout the session and a reversal in preference between the left and

right reward wells after block changes in the free choice trials. Indeed, our simulations

found surprisingly little average benefit from learning the more compact four-state

representation in terms of reward yield, suggesting that this task does not strongly

incentivize acquiring such a representation. This might also imply that forming the

more parsimonious task representation carries some cognitive cost. Indeed, the six-

state representation assumes separable features for odor and location, while the four-

state representation requires encoding the interaction between them. Accordingly,

the prevalence of the simpler six-state representation in the choice behavior of these

animals may be seen as less of a “failure” and more the result of a rational allocation

of resources [41, 42].

Learned generalization in task representation has been shown in “acquired equiva-

lence” [9], where animals respond equivalently to two stimuli that have been followed

by the same consequence (e.g., food). If one stimulus is later paired with a new out-

come (e.g., electric shock), the animals exhibit the same (fear) response to the other

stimulus, demonstrating the shared representation. In the current task, however, odor

cues only lead to the same consequence if followed by the correct action. The added

complexity of instrumental contingencies perhaps limited the generalization strategies
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available in purely Pavlovian settings [43, 44]. The instrumental contingencies in this

task may also prompt animals to use a different learning strategy entirely, acquiring

a policy over available actions in a given state directly (e.g. [45]) rather than via

action value representations as we have modeled here. In policy learning, general-

ization between odor trial types would be limited as alternative actions are grouped

together, separating forced-choice from free-choice trials through the presence of the

unrewarded choice option in these trial-types [46].

We found rats to segregate learning by trial type, with little generalization be-

tween them. This may indicate that odor representations dominated other features

in this task. Rats display rapid learning, excellent memory and highly discriminative

responses for odors, in line with the ethological relevance of these cues [47, 48, 49].

In contrast, a preference for spatial representation might have favored the four-state

model. It may be that receiving reward at the well where choice was reported in-

terfered with learning of spatial location as a dominant state component of the task.

To better understand the conditions under which generalization may be acquired, it

would be interesting to investigate other choice tasks that permit different representa-

tional strategies. For example, in a similar task in which reward identity (rather than

delay) is changed between blocks [50], the distinct encoding of identities may help

animals group together trials with the same reward identity, potentially facilitating

generalization. Further, studying the very early stages of training, including the stag-

gered introduction of different trial types, may demonstrate critical features of early

experience that favor one type of task representation over another. Future work may

also benefit from examining behavioral features beyond choices (e.g. reaction times),

as well as neural representations, in order to further dissect the learning of task rep-

resentation. Of note, we did not test for other forms of generalization across trials in

our data, for instance, whether acquired knowledge about the block structure of the

task facilitates faster learning after contingency changes in subsequent sessions. This
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kind of generalization has been observed in other odor-guided choice tasks as well as

in numerous reversal paradigms [51, 52], and likely reflects learning of a higher-level

structure of the task than we have investigated here.

Although none of the animals represented the generative task structure, few rats

did acquire partial knowledge. This presents interesting directions for future stud-

ies: how was the partial knowledge acquired by these animals, and what gave rise

to this individual difference in learning? Fitting our computational models to the

first and second half of data separately provides some hints: overall, animals’ task

representation was more hybrid towards the second half, and this was driven by a

small subset of animals who relied more heavily on the shared representation in later

sessions (Figure 2.5A-C). However, such representation learning did not result in a

higher reward gain for these animals in later sessions (Figure 2.5D). It was unclear

what contributed to the differential learning effects between animals as the amount of

representational change was not associated with task experience (i.e., the number of

sessions performed; Figure 2.5E). Nevertheless, we can conclude from our data that

the acquisition of shared representations through experience is quite slow, and longer

training experience may be needed to study this learning process.

Previous theoretical and empirical studies may help shed light on the principles of

representation learning that facilitate generalization, as well as individual variability

in this process. For instance, models of latent-cause inference propose animals use

similarity to infer whether different experiences arise from a shared latent state [53, 54,

21]. Individual differences in task representations may also arise from idiosyncrasies

in immediate experience, long-term effects of development or even genetic differences

[55, 56].

In designing experiments, we often choose to randomize over irrelevant features,

for instance, what side a stimulus is presented on, or whether an outcome is experi-

enced through a forced- or free-choice trial (e.g., [57]). It is tempting to assume that
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our subjects also know to gloss over these nuisance task factors, however, learning to

represent a task optimally is not a trivial process [58], especially when we cannot give

subjects explicit instructions. Our results highlight that the factors influencing state

representation in behaving animals extend beyond the experimenter-controlled gen-

erative statistics of a task, and reveal fine-grained differences in individual strategies

that may be elicited in even a relatively simple reward learning task. Such discrep-

ancies between the assumed representation and the one animals are actually using

may be especially critical when interpreting neural data, but also in understanding

behavioral data, and the effects of interventions. This suggests a humble approach to

analysis that leans on the data—rather than an experimenter-centric view—to reveal

how animals model the tasks they are performing.

2.4 Supplementary Methods

2.4.1 Subjects

The behavioral data of 22 rats (322 sessions in total) performing an odor-guided choice

task (see description below) were obtained from three previous studies [31, 32, 33].

Data from 7 rats (76 sessions) were obtained from [32]: these animals had electrodes

implanted in their left ventral striatum for single-unit recordings (neural data not

used in this paper; same for the other two studies). Data from 9 rats (75 sessions)

were obtained from the control group in [31]: recording electrodes were implanted

in their left or right ventral tegmental area. Finally, data from 6 rats (171 sessions)

were obtained from the sucrose control group in [33]: self-administration catheters

(that were used only for the cocaine group, not the control animals analyzed here) and

driveable electrodes were implanted, and a twelve-day self-administration of maximum

two sucrose pellets via lever press was completed a month before the experiment. All

animals received extensive prior training on the task before data acquisition.
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2.4.2 The odor-guided choice task

Trial structure. Rats were trained on a well-studied odor-guided choice task [30].

The experiment apparatus is shown in Figure 2.1A. Each trial started with the illu-

mination of a light inside the experimental box. When the light was on, a nose poke

into the odor port resulted in the delivery of one of three distinct odor cues. At odor

offset, the rat had 3 seconds to make a response at one of the two fluid wells located

below and to the left or right of the odor port. One odor cue was reliably associated

(through excessive pre-training) with reward delivery in the left well (a left forced-

choice trial), a second odor was similarly associated with reward delivery in the right

well (a right forced-choice trial), and a third odor was associated with reward delivery

at either well (a free-choice trial). Odors were presented in a pseudorandom sequence

such that 7 out of 20 trials were free choices, and the remaining were approximately

equal numbers of left and right forced choices. If the rat made a correct response in

a forced-choice trial, or either response in a free-choice trial, a reward was delivered,

with a delay and a magnitude determined by the side of the well and the current

block (see below for block structure); otherwise, the light would turn off immediately,

signaling the end of the trial.

Block structure. Each session (one per day) consisted of four blocks (Figure 2.1B).

All sessions started with two “delay blocks”, followed by two “magnitude blocks”. In

“delay blocks”, reward (one drop of sucrose) at one well was delivered immediately

(500ms; “short”), while reward at the other well was delayed (1-7s; “long”). The

timing of the delayed reward varied according to an adaptive staircase procedure to

ensure a fixed proportion of “long” free choices across individual rats (see respective

papers from which data were reanalyzed for details). In “magnitude blocks”, the delay

of reward was held constant (500ms), but the magnitude was one drop (“small”) at

one well, and two drops in succession (“big”; drops 500ms apart) at the other well.
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Each drop of reward was a 0.05 ml bolus of 10% sucrose solution. For the first block

of each session, the reward contingencies were assigned randomly to the two wells;

they were then switched in the second block. In the third block, reward delivery at

the “short” reward well remained the same (now called “small”) while delivery at the

previously “long” well became “big”; these contingencies were switched again in the

fourth block. All block switches were unsignaled. Blocks were on average 70 trials

long, with varying lengths (standard deviation: 14 trials).

2.4.3 Reinforcement-learning models with different state

representations

We characterized the pattern of choices across a session using a series of reinforcement-

learning (RL) models. We assumed the Rescorla-Wagner update rule [3], with reward

discounted according to the delay between well entry and reward delivery, d (in units

of seconds):

Vt+1(s) = Vt(s) + η
(
γdrt − Vt(s)

)
,

where Vt(s) is the value of state s on trial t and rt is the amount of reward (0, 1 or 2)

delivered on the same trial. Learning rate η and discount rate γ were free parameters

bounded in the range [0,1].

We denoted the possible choices on each trial by a ∈ [left,right]. The decision

variables governing the likelihood of left and right choices, DV (left) and DV (right),

were determined by combining the value of the predicted state following that action

(denoted by sa) with a side bias term b and a perseveration term p:

DV (a) = Vt(sa) + b · Ia,right + p · Ia,at−1 ,

where Ii,j is 1 for i = j and 0 otherwise. Thus, b < 0 indicates a general bias towards

choosing the left side, and b > 0 indicates a bias towards right; p > 0 indicates a
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tendency to repeat the same choice as the previous trial (regardless of the odor cue),

and p < 0 indicates a tendency to avoid the preceding choice and choose the alternate

action.

Decision variables for the left and right choices were compared using a softmax

(logistic) function to determine the probability of each choice, with a free parameter

β controlling the randomness of choices (the slope of the logistic function). Finally,

we also assumed a lapse rate of λ, where lapses involved a completely random choice.

P (left) = (1− λ) · 1

1 + e−β(DV (left)−DV (right))
+
λ

2
.

Alternative models. Core to all RL models is the state representation of the task

with which an agent is engaged. For the current task, we considered two distinct

representations: four-state and six-state. We built four alternative learning models:

one each of the four-state and six-state representations, and two hybrid models with

mixed state representations (Figure 2.2E).

• The four-state model assumed full knowledge of the shared reward represen-

tation. Thus, there were four subsequent states upon choice, with free-choice

trials and correct forced-choice trials sharing the same subsequent states “Left”

and “Right”. Reward outcomes in both trial types were used to update the

value of these shared states. Incorrect forced choices led to two non-rewarding

subsequent states “Left-NoRwd” and “Right-NoRwd”.

• The six-state model assumed no knowledge of the shared reward representation.

Each odor led to a separate pair of subsequent left and right states (six states

in total). Reward outcomes (including no reward upon incorrect choices) were

used to update the value of the subsequent state determined by the current

odor and choice.
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• The hybrid-value model assumed both four-state and six-state representations,

with two sets of state values updated in parallel following each outcome. When

predicting choices, the hybrid model calculated the values for left and right

choices using a weighted sum of the values under each representation:

V (s) = w4V4(s) + (1− w4)V6(s),

where V4 and V6 were the state values under four- and six-state representations,

respectively, and w4 controlled the balance between the two representations. For

w4 = 1, the hybrid-value model was equivalent to the four-state model, whereas

for w4 = 0, it was equivalent to the six-state model, interpolating smoothly

between the two models for the range of values of w4 ∈ [0, 1].

• The hybrid-learning model assumed a mixed representation. It had six subse-

quent states whose values were updated in the same way as in the six-state

model, with learning rate η. In addition, generalization between free-choice

trials and correct forced-choice trials occurred by using outcomes on those tri-

als to update values of the other subsequent state with the same choice, with

generalization rate ηg. For ηg = 0, the hybrid-learning model was equivalent

to the six-state model, whereas for ηg = η, it was equivalent to the four-state

model, interpolating smoothly between the two models for the range of values

of ηg ∈ [0, η].

All four models had the following free parameters: η, γ, β, b, and p. In addition,

the hybrid-value model had a free parameter w4, and the hybrid-learning model had

a free parameter ηg.
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Figure 2.7: Posterior estimates of parameter values in the hybrid-value
model. From top to bottom: the group-level posterior distributions; the posterior
means of individual parameters for each animal; MCMC samples of individual param-
eters (sampled from a distribution with the above mean and individual variances).
Different colors indicate different animals, ordered by dataset.

2.4.4 Hierarchical model fitting using Stan

In order to test whether and to what extent rats acquired and took advantage of the

shared reward structure of the task, we fit the above four RL models to their choice

data. Hierarchical model fitting was performed with PyStan [59], where the param-

eters of individual animals are assumed to be drawn from a group-level distribution.

For each model, we ran 4 chains of Hamiltonian Monte Carlo with 2000 iterations

each (among which 1500 were warm-up samples). Model performance was evaluated

using the Watanabe-Akaike information criterion (WAIC) [36], with a lower WAIC

value indicating a better fit to the data. Results from this hierarchical fitting pro-

cedure were compared to those obtained by fitting each animal individually, and the

parameter estimates and model comparison results were found to be consistent.

2.4.5 Model simulation

Through hierarchical model fitting, we obtained posterior estimates of model param-

eters (both the group-level distribution, and individual parameters for each animal;

Figure 2.7). We then simulated the model to perform the task using these parameter

values. The reward contingencies in the simulation matched the original experiment,

including the block sequences, total number of trials per session, the proportion of
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forced-choice and free-choice trials, and the titration of the reward delay. For each

model, we simulated a single agent governed by the group mean parameters (i.e., the

“average rat”), which we used to calculate and compare the average amount of reward

obtained (see Figure 2.6).
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Chapter 3

Rats learn about underlying task

structure in fear extinction

through latent-cause inference

The contents of this chapter were published in: Mingyu Song, Carolyn Jones, Marie-

H. Monfils, and Yael Niv. Explaining the effectiveness of fear extinction through

latent-cause inference, Oct 2021. psyarxiv.com/2fhr7.

All data and code are available at

https://github.com/mingyus/fear-extinction-latent-cause-inference.
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3.1 Introduction

Fear memories are notoriously hard to erase. After an association has been formed

between an originally neutral cue (e.g., a tone) and some aversive outcome (e.g., a

foot shock), animals cannot simply unlearn this association through standard ex-

tinction procedures (i.e., being presented with the cue repeatedly in the absence

of the aversive outcome) [61]. During extinction, the animals’ fear response to-

wards the cue gradually reduces, but it usually returns if tested after a long delay

(spontaneous recovery)[1, 62], or if the animal is reminded of the aversive outcome

(reinstatement)[1, 63]. Associative learning theory explains these phenomena by pos-

tulating that extinction involves learning a new association rather than updating the

original fear association [64]. However, this theory does not delineate the particular

circumstances under which a new association is initiated, and how this can be avoided

so that the original association may be modified through new experience.

Recent theoretical work [65] suggested a formalization of the way animals de-

cide when to learn a new association and when to update old associations using a

latent-cause inference framework. In this framework, all observations (e.g., cues and

reinforcers) are assumed to be generated by latent (unobservable) causes that are

each active for a certain (unknown) amount of time. Each latent cause has a cer-

tain tendency to generate observations, characterized by its “generative strength”1 of

each observation. While interacting with the environment, animals infer what latent

cause is currently active based on their prior experience and current observations,

and behave accordingly. At the same time, they learn and update their estimates of

the generative strength of the currently active latent cause.

1In associative learning, the tendency for two stimuli to co-occur is characterized by an “associa-
tive strength”. Inspired by this, here we term the tendency for a latent cause to generate observations
“generative strength” to emphasize the causal/generative relationship. This concept is also similar
to the “emission probability” in Hidden Markov Models.

32



According to this latent-cause inference framework, in fear extinction, animals

infer that there are two distinct latent causes, based on their distinct tendency to

generate shocks: one dangerous latent cause (active during conditioning, with a high

probability of generating shocks), and one safe latent cause (active during extinction,

with low or no probability of generating shocks). The reduction of fear response

during extinction is a result of the animal’s increasing belief that the second cause

is active as more no-shock observations accumulate. Presentation of a shock in a

reinstatement procedure is taken to indicate that the original dangerous cause is

likely to be active again, causing the return of fear. Similarly, after some passage of

time, both causes (dangerous and safe) are equally likely to be active again, leading

to the spontaneous recovery of fear response as compared to that measured shortly

after extinction.

In addition to explaining the return of fear, the latent-cause inference framework

prescribes a solution for effective extinction of the original fear association: instead

of abruptly “cutting off” the pairing between tone and shock, which encourages the

animals to infer a new latent cause, gradually decreasing their co-occurrence will

make animals more likely to infer that the old cause is still active during extinction,

but with decreasing tendency to generate shocks. To demonstrate this, Gershman

and colleagues [21] conducted two gradual extinction experiments (see Figure 3.1

for experimental design), and indeed they observed reduced fear responses in both

a spontaneous recovery test and a reinstatement test. In both experiments, they

contrasted this condition with both a standard extinction condition and a gradual

reverse condition. In the latter, instead of gradually decreasing the frequency of the

shock, they gradually increased it, while keeping the total number of shocks the same.

Despite the surface similarity between the two gradual conditions (only two trials were

different, though this difference markedly changed the trend of shock frequency from

decreasing to increasing; Figure 3.2), extinction was far less successful in preventing
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the return of fear in the gradual reverse condition, supporting the idea that abrupt

changes encourage the inference of new latent causes. Since then, the effectiveness of

gradual extinction has also been replicated in human participants [66], as well as in

similar studies with occasional reinforcements during extinction [67, 68].

Conditioning
(3 trials)

Extinction
(24 trials)

Memory test
(4 trials)

Spontaneous 
recovery test

(4 trials)

Reinstatement
(2 trials)

Reinstatement 
test

(4 trials)

24 hours
24 hours 30 days

24 hours 24 hours
Standard extinction

Gradual reverse
Gradual extinction

(n = 16, 16, 15)

(n = 8, 12, 12)

Figure 3.1: Experimental design in Gershman et al. [21]. Across two experi-
ments (spontaneous recovery and reinstatement), rats were assigned to three different
extinction conditions: standard extinction, gradual extinction and gradual reverse.
All animals first underwent a conditioning session (3 trials of tone-shock pairing).
This was followed by an extinction session (procedures differed based on the extinc-
tion condition) 24 hours later. In the spontaneous recovery experiment, animals were
first tested on their memory of extinction after another 24 hours (termed a “long-
term memory test” in the original paper), and then tested for spontaneous recovery
of fear response 30 days later. In the reinstatement experiment, animals underwent 2
reinstatement trials (shocks presented alone) 24 hours after extinction, and then were
tested for fear response after another 24 hours. The number of animals participating
in each experimental condition is noted for each experiment, color-coded based on
the extinction procedure: standard extinction in blue, gradual extinction in green,
and gradual reverse in red.

Conceptually, these effects can be explained by the latent-cause inference frame-

work [65]; in fact, the experiments done by Gershman and colleagues [21] were in-

spired by this theoretical framework and aimed to test its predictions. However, it

turned out that the original latent-cause inference model (presented in detail, e.g., in

[69]), was not able to explain the empirical observations, in particular the difference

between gradual extinction and gradual reverse conditions (S. Gershman, personal

communication). The lack of a satisfactory computational account limited the con-
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Standard 
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Gradual 
extinction

Gradual 
reverse

Conditioning
(after MAP)

Extinction
(after MAP)

Test
(before MAP)

Figure 3.2: Trial sequences and model predictions for latent-cause assign-
ments under the three extinction conditions. Trial sequence in conditioning,
extinction and test sessions: each rectangle represents the tone presentation in one
trial; trials in which the tone co-terminated with a shock are marked by the lighten-
ing signs. Background shading colors indicate latent-cause assignments predicted by
our model: a two-cause sequence for standard extinction and gradual reverse, and a
one-cause sequence for gradual extinction. Splitting color at test indicates that both
causes are likely. The possibility of a third, new, latent cause at test is not illustrated,
as it is largely consistent across conditions and contributes little to freezing behav-
ior. For conditioning and extinction sessions, the latent-cause assignments shown are
those after each session, after collapsing to the mode of the posterior (MAP estima-
tion; see text). For the test session, we show the probabilistic assignments before the
MAP estimation as those generated the behavior measured. That is, all predicted
assignments shown (both for conditioning and extinction sessions, and for the test
session) are presumably what animals had in mind at test time, and therefore what
governed freezing behavior during test.

clusions that could be drawn from the original work, and its potential to inspire future

investigation.

To address this gap, here we describe a latent-cause model with additional as-

sumptions that captures the pattern of the original empirical results. We show the

model’s predictions through simulations, and demonstrate the necessity of each model

assumption by comparing with alternative models. Indeed, it is not trivial for the

model to generate predictions that match animals’ behavior across all three extinction

conditions, and several important modeling assumptions are needed. These include

a specific form for the prior belief over latent causes, how generative strengths are
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learned, a reduction of uncertainty in the inference process, and accounting for an-

imals’ habitual behavior. We note that even with these assumptions, our model

can only predict the comparative behavioral patterns between conditions, but not

the exact freezing rates in each condition. We discuss potential reasons for this dis-

crepancy. Although the original empirical results we model here may benefit from

additional examination to show its generality, we propose that understanding the po-

tential computational underpinnings of these findings can advance our understanding

of extinction processes and how they can be made more effective. More broadly, this

work provides insights into the potential mechanisms that support animal learning

and inference, and generates new predictions to be tested in future experiments.

3.2 Methods

3.2.1 The latent cause inference model

We use a latent-cause inference model to explain the effectiveness (in terms of degree

of return-of-fear) of standard extinction, gradual extinction and gradual reverse pro-

cedures, in both spontaneous recovery and reinstatement experiments. The model

describes how animals infer the active latent cause on each trial by combining a prior

belief with current observations, and how animals learn about the statistics of each

latent cause (i.e., its generative strength of observations). Specifically, as detailed

below, the model we found to account for the experimental results uses the distance-

dependent Chinese restaurant process as the prior, uses Rescorla-Wagner learning to

update generative strength, and assumes that animals approximate the (intractable)

Bayesian inference process by collapsing their belief to the posterior mode between

sessions. Additionally, to compare model predictions to empirical measurements, we

make assumptions about how the prediction of shock maps to freezing behavior. We

now describe each part of the model.
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Prior: distance-dependent Chinese restaurant process

We assume that the animals’ prior belief over latent causes takes the form of a

distance-dependent Chinese restaurant process [70], a variant of the Chinese restau-

rant process (CRP) infinite mixture-model prior [71].

The standard CRP describes a categorization process with an a priori unlimited

number of categories, whereby a new trial is more likely to be generated by a latent

cause (category) that has generated more trials in the past. Specifically, the prior

probability of an old cause generating the current trial is proportional to the number

of trials this cause has already generated; the probability of the next trial being

generated by a completely new latent cause is proportional to a fixed concentration

parameter α. Denoting the active latent cause on trial i by ci, the prior probability

distribution over ci is thus:

P (ci = c|c1:i−1) =


1

i−1+α
∑

j<i δ(cj, c) (c is an old cause)

1
i−1+α α (c is a new cause)

where δ(x, y) is the Kronecker delta function: δ(x, y) = 1 if x = y; otherwise, δ(x, y) =

0. Thus, δ(cj, c) denotes whether the current cause c is the same one that generated

trial j. 1
i−1+α is the normalization constant for this distribution. This distribution is

exchangeable, meaning that it results in the same prior distribution over latent causes

regardless of the order of trials.

Because trial order is important in the task we model, we used the the distance-

dependent Chinese restaurant process (ddCRP)[70], in which more distant experience

contributes less to current inference through a decay function applied to the trial

count. Specifically, we compute distance over time, using an exponential function

with slope k. Since exponential decay can be arbitrarily close to zero (that is, an old

latent cause not experienced for a long time can have a close-to-zero prior probability),
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departing from the classic ddCRP, we also add a baseline probability b to all old latent

causes. This corresponds to an assumption that any old latent cause has a non-

negligible prior probability of becoming active again. The equations then become:

P (ci = c|c1:i−1) ∝


∑

j<i e
−k(ti−tj)δ(cj, c) + b (c is an old cause)

α (c is a new cause)

(3.1)

where ti is the time of trial i. The normalization constant for this distribution can

be calculated by summing over the probability of all old causes and the new cause.

Likelihood: Rescorla-Wagner learning

We denote the generative strength of each observation x for latent cause c by V (x|c),

which describes the tendency of latent cause c to generate x. Using the simplest

and most widely-used learning rule in animal conditioning, i.e., the Rescorla-Wagner

learning rule [3], we assume that V is updated for the currently active latent cause ci

based the observation of x:

∆V (x|ci) = η(xi − V (x|ci))

where η is the learning rate, and xi is the observation of x on trial i (xi = 1 or 0

means x is present or absent, respectively, on that trial).

To model fear extinction, we consider two types of observations: tone and shock.

Given the different a priori prevalence of such stimuli in the animals’ natural envi-

ronment, we assume different initial values for the generative strengths for new latent

causes: V0(tone) = 0.5 and V0(shock) = 0.05. We also assume a higher learning

rate ηshock for shocks (when shocks are present) considering their high motivational

valence. These assumptions are important for the pattern of results, but the specific

numeric values were not chosen through formal optimization or model-fitting.
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We use the generative strength V as the proxy for the animal’s estimated probabil-

ity of observing the tone or shock, i.e., the likelihood of the corresponding observation

on that trial given a latent cause:

P (x|ci) = V (x|ci). (3.2)

Update: Exact inference, with collapse of belief distribution between ses-

sions

We assume that animals perform Bayesian inference during each session. That is,

they combine the prior probability and likelihood of both observations (assumed to

be independently generated given the latent cause) to calculate the posterior belief

distribution over the active latent cause:

P (ci|x, c1:i−1) ∝ P (ci|c1:i−1)
∏
x∈x

P (x|ci).

Here, the first term on the right-hand side is the ddCRP prior from above (Equa-

tion 3.1) and the second term is the likelihood of the current observations (Equation

3.2 above). x denotes the combination of both observations (tone and shock). In this

way, the animal maintains a probability distribution over each of the latent causes

being active on each trial, updating this distribution as trials unfold.

Between experimental sessions, however, we assume that animals collapse their

posterior belief distribution to its mode, i.e., a maximum a posteriori (MAP) estima-

tion. In other words, we assume that animals do not maintain uncertainty over what

latent cause was responsible for what observation in the previous session; instead,

they “pick” the most likely sequence of latent causes for the past session, moving

forward to the next session with only this deterministic assignment of trials to latent

causes as the prior. Note that this is not a technical choice for faster model simu-
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lation, but an important modeling assumption for predicting the difference between

gradual extinction and gradual reverse conditions (see 3.3.4).

Mapping prediction of shock to freezing behavior

On each trial, as animals hear the tone and before the observation of a shock (on

reinforced trials), we assume that animals use their current estimate of latent-cause

assignment to predict how likely a shock is to occur on that trial, and thus decide

whether or not to freeze in anticipation. The estimated shock probability is calculated

by marginalizing over all possible latent causes:

P (shock|tone) =
∑
ci

P (shock|ci)P (ci|tone, c1:i−1).

Here, the last term is calculated using Bayes rule:

P (ci|tone, c1:i−1) ∝ P (ci|c1:i−1)P (tone|ci).

In mapping the animal’s prediction of shock probability to freezing behavior, we

make two more assumptions. First, we assume a non-zero baseline freezing rate

(denoted by p0): animals do not freeze in their natural environments; if, however, the

animal becomes aware of shocks through experimental manipulations and anticipates

them, empirical findings suggest that animals will show some baseline level of freezing

behavior [72], regardless of how unlikely the shock is. In addition, for simplicity, we

assume that freezing probability is proportional to the predicted shock probability:

P (freezing) = (1− p0) ∗ P (shock|tone) + p0.
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We also consider the locally perseverative nature of animals’ behavior [73, 74], and

assume that there is a chance of pr that the animal will exhibit the same behavior as

in last trial, regardless of its current prediction for the presence or absence of shock.

3.2.2 Model simulations

We used the following parameter values for simulating the model: α = 0.2, k =

0.1, b = 0.1, η = 0.2, ηshock = 0.4, V0(tone) = 0.5, V0(shock) = 0.05, p0 = 0.2, pr = 0.7.

We note that simulation results were consistent across a range of parameter values.

Because it is computationally intractable to compute the full posterior distribution

analytically, we used the particle filter algorithm as in [65] to approximate the pos-

terior distribution with 10,000 particles.

3.3 Results

In the following, we describe behavioral predictions of the model with all the as-

sumptions described above (distance-dependent prior on cause assignment, Rescorla-

Wagner rule for learning the generative strength of stimuli, MAP estimation between

sessions, direct mapping from shock prediction to freezing behavior), and compare

them to behavioral results in Gershman et al. [21]. We then turn to evaluating the

necessity of each assumption by comparing with alternative models.

3.3.1 Experimental measures and modeling goals

We simulated the model and obtained its prediction for the three extinction condi-

tions: standard extinction, gradual extinction, and gradual reverse. We considered

two types of test (as in [21]): spontaneous recovery and reinstatement. Here, we

first describe the experimental conditions in brief (see [21] for details on experimental

design and subjects), as well as the goals of our modeling.
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In the experiment, each rat completed one of the experimental conditions (Figure

3.1). All experiments started with a conditioning session (3 trials of a 20s tone, co-

terminated with a 0.5s foot-shock). 24 hours later, animals underwent an extinction

session (24 trials of the same tone) in one of three ways (Figure 3.2): in standard

extinction, the tone was presented alone in all trials; in gradual extinction, the tone

co-terminated with a shock on trials 1, 3, 6, 10 and 15, and no shocks on other

trials; in gradual reverse, the tone co-terminated with a shock on trials 1, 6, 10, 13

and 15, and no shocks on other trials. In this way, in gradual extinction, shocks

gradually became less frequent, whereas in gradual reverse, shocks were made to be

more frequent as the extinction session proceeded. In all cases, the last 9 trials of the

extinction session did not involve shocks, to allow comparable extinction of freezing

behavior before the subsequent test.

Animals were then tested for their fear response to the tone, measured by the

percentage of time they spent freezing during the tone. In the spontaneous recovery

experiment, 24 hours after the extinction session, the animals first underwent a so-

called long-term memory test to test the extinction memory (with 4 trials of the tone

alone); 30 days later, they were tested again for spontaneous recovery (4 trials of the

tone alone). In the reinstatement experiment, 24 hours after the extinction session,

animals experienced 2 unsignaled shocks without the tone. After another 24 hours,

they were tested with 4 trials of the tone alone.

Our simulations focused on model predictions for (1) latent-cause assignment

throughout the experiment; (2) animals’ freezing rate in the last 4 test trials. Our

goals were to demonstrate the latent-cause assignments that support animals’ behav-

ior under each extinction procedure, and more importantly, explain the qualitative

differences between the three procedures in terms of their effectiveness in preventing

the return-of-fear: gradual extinction being the most effective (i.e., lowest freezing

rate at test, compared to the end of extinction), in comparison to standard extinction
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and gradual reverse. We note here, and return to this point in the Discussion, that

while we strove to predict behavior throughout the experiment, due to large vari-

ability between individual rats, the behavioral pattern during extinction was hard to

discern. We therefore did not attempt to quantitatively predict trial-by-trial behav-

ior, or to fit the behavior of individual animals by using different parameter values

for each animal. Instead, we focused on the average qualitative pattern of results

at test, which meaningfully separated the different extinction procedures in terms of

effectiveness.

3.3.2 Latent-cause assignment

Figure 3.2 illustrates the model’s assignment of trials to latent causes for the three

extinction conditions. In this schematic, assignments in conditioning and extinction

sessions are the deterministic results after the post-session MAP estimation (see Fig-

ure 3.3A for the probabilistic assignments during the extinction session); these are

the assignments that influence behavior at the test session, which is the focus of our

interest. We also combine here the two types of test (spontaneous recovery and re-

instatement) because their latent-cause assignments are similar (see Figure 3.3B for

latent-cause probability in each test). In standard extinction, two different latent

causes are inferred for the conditioning session (all shock trials) and the extinction

session (all no-shock trials); at test, both causes are likely (due to either reminder

shocks or passage of time, both elevating the probability of the initial conditioning-

session latent cause). In gradual extinction, because of the gradual reduction of shock

probability, conditioning and extinction sessions are assigned to the same latent cause,

as are the test trials. In gradual reverse, in contrast, all shock trials throughout con-

ditioning and extinction are assigned to one latent cause, whereas all no-shock trials

are assigned to a different latent cause; then, at test, both causes are likely.
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Figure 3.3: Model prediction for latent-cause probabilities. (A) Comparison
between a two-cause sequence and one-cause sequence during extinction.
Log posterior ratio greater than (less than) zero indicates the dominance of the two-
cause (one-cause) sequence in inference; the dashed line at zero represents the two
types of cause sequence being equally likely. At the end of the extinction session, the
two-cause sequence is more likely than the one-cause sequence in standard extinction
and gradual reverse; in contrast, the one-cause sequence is more likely in gradual
extinction. Here, “two-cause” sequence corresponds to the assignment of all shock
trials to one cause, and all non-shock trials to another; “one-cause” sequence corre-
sponds to all conditioning and extinction trials being generated by the same cause.
(B) Prior probability of latent causes in the first trial of the long-term
memory and test sessions. Left and middle columns: long-term memory and test
sessions in the spontaneous recovery experiment; right column: test session in the re-
instatement experiment. Top, middle and bottom rows: standard extinction, gradual
extinction, and gradual reverse conditions, respectively. Causes are labeled based on
what types of past trials they have generated: conditioning (cond), extinction (ext),
reinstatement (reins), shock or no-shock. They are color-coded as in Figure 3.2: yel-
low indicates a “dangerous cause”, grey indicates a “safe cause”, and purple indicates
a new cause (with minimal prediction of shock, V0(shock) = 0.05).
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3.3.3 Prediction of freezing behavior

Figure 3.4 shows model prediction for freezing rate across experiment sessions. For

all three extinction conditions, freezing rate increases during conditioning, decreases

during extinction (more so in standard extinction, with no shocks in the extinction

session), and continues to decrease in the long-term memory test (24 hours after

extinction in the spontaneous recovery experiment). However, in the test session

(both spontaneous recovery and reinstatement experiments), the predictions for the

three conditions diverge, due to the distinct latent-cause assignments: in standard

extinction and gradual reverse conditions, freezing rate increases compared to the

end of extinction, showing the return of fear; in the gradual extinction condition, it

continues to decrease both in the spontaneous recovery and the reinstatement tests.

Figure 3.5A and 3.5B summarize model predictions on the difference in freezing

rate between the four test trials and the last four extinction trials, for comparison

with the qualitative pattern in the empirical results (Figure 3.5C and 3.5D). Ac-

cording to the model, for both spontaneous recovery and reinstatement tests, fear

response reduces the most in gradual extinction, followed by gradual reverse; fear

response at test increases in standard extinction. We note here (and discuss in more

detail below) the clear discrepancies between our simulation results and the empirical

results, where in simulation gradual reverse does not result in overall increase in fear

at test as compared to the end of extinction. Nevertheless, the model predictions

are qualitatively consistent with the empirical findings, illustrating the success of the

current model in explaining the relative pattern seen in the experimental results.

3.3.4 Necessity of model assumptions

The model described above was tailored to explain the behavioral patterns in the

data by adding assumptions as needed where the original CRP model [65] did not

suffice. We now turn to discussing these model assumptions and demonstrating their
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Figure 3.4: Model prediction of freezing rate for (A) spontaneous recov-
ery and (B) reinstatement experiments. Under all three extinction conditions,
freezing rate increases during conditioning, and decreases during extinction. In the
beginning of test session, however, freezing rate jumps back up for standard extinc-
tion and gradual reverse conditions, but remains low in gradual extinction. Note that
the model predicts freezing rate upon tone presentation, before the actual delivery
(or absence) of shock. Dots at the bottom of the plots indicate shocks in the corre-
sponding trials, color-coded based on the extinction conditions. Dashed gray vertical
lines indicate session boundaries (in practice: at least 24h gap).
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Figure 3.5: Impact of different forms of extinction on return of fear: model
predictions (A,B) are qualitatively consistent with empirical results (C,D)
in both experiments. Model simulations correctly predict that standard extinction
leads to the greatest return of fear, whereas gradual extinction is the most effective
in permanently reducing fear, across both spontaneous recovery and reinstatement
tests. The effectiveness of extinction is calculated as the difference in freezing rate
between the four test trials and the last four extinction trials (all no-shock trials).
Panels C and D are reproduced from [21].

necessity. We do so by comparing the predictions of the current model (referred to

as “main” model below) to reduced models that do not include these assumptions.

Since we did not fit the parameters of the main model to the data using statistical

techniques, we do not present formal model comparisons, but rather focus on the

qualitative patterns in the data.

Distance-dependent CRP: spontaneous recovery depends on test delay

Experiments suggest that spontaneous recovery of fear response increases with the

delay between extinction and test [1, 62]. For example, the standard extinction group
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Figure 3.6: Simulation of alternative models demonstrates the necessity of
assumptions in the main model. Each alternative model differs from the main
model in only one assumption; model simulations were conducted with the same pa-
rameter values, except for the alternative assumptions, as noted below. Shown are
simulations of the spontaneous recovery experiment; results are consistent for the
reinstatement experiment. (A) The main model, same as Figure 3.4A. (B) Stan-
dard CRP prior (without distance dependence; k = 0 in the ddCRP) assigns trials
in the memory test (24 hours later) and spontaneous recovery test (30 days later)
to the same latent causes, and thus shows no spontaneous return-of-fear after 30
days for any of the conditions. (C) Learning generative strengths through infer-
ence (i.e., Bayesian inference on Bernoulli probabilities for tone and shock, instead of
Rescorla-Wagner learning) predicts the same latent-cause assignments and expected
shock probability for gradual extinction and gradual reverse conditions, and thus can-
not explain their difference in fear responses during test. In this alternative model,
we replaced the Rescorla-Wagner learning parameters η, ηshock, V0(tone), V0(shock)
with parameters for pseudo-counts: N(tone) = 0.5, N(no-tone) = 0.5, N(shock) =
0.95, N(no-shock) = 0.05. These pseudo-counts determine the prior probabilities of
tone and shock (each denoted by x): p(x) = N(x)/ (N(x) +N(no-x)), reflecting a
similar asymmetry in the a priori prevalence of tone and shock as in the main model.
(D) Keeping the full posterior distribution over latent causes across sessions (no MAP
estimation) predicts minimal return-of-fear in the gradual reverse condition. (E) No
perseveration (pr = 0) leads to over-sensitivity to shock/no-shock experience during
extinction which was not seen in the empirical data, as well as rapid reduction in
return-of-fear during test. (F) Replacing the perseveration assumption with lower
learning rates to stabilize responding across trials (pr = 0, η = 0.1, ηshock = 0.2) fails
to predict the return-of-fear effect in the gradual reverse condition.
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in Gershman et al. [21] showed no significant return of fear in the memory test 24

hours after extinction (paired sample t-test: t(15) = −1.80, p = .09, in comparison to

the last four extinction trials). In contrast, the rats showed significantly more freezing

at test 30 days later, compared to the last four trials of extinction (paired sample

t-test: t(15) = 3.26, p < .01).

Our model captures the dependency of spontaneous recovery on delay duration

using the distance-dependent CPR prior, similar to what was used in [75]. According

to this prior, the probability of an old latent cause being active depends on the time

between its previous instances and the current trial. The closer they are in time, the

more likely the old cause will be active again. As a result, the model predicts that the

latent cause inferred for the extinction session is very likely to continue to be active in

the memory test (Figure 3.3B left column), as the memory test is much closer to the

extinction session (24 hours apart) than to the conditioning session (48 hours). After

30 days, however, both conditioning and extinction sessions are similarly distant,

so the model predicts that both the conditioning and extinction latent causes are

equally likely to be active (Figure 3.3B middle column; of course, a completely new

latent cause is more likely in this case), resulting in an increased fear response in

standard extinction and gradual reverse. In gradual extinction, since there has been

only one latent cause throughout, this cause (with reduced generative strength of

shock) is inferred to be active again during test, resulting in no return-of-fear above

and beyond what was observed at the end of extinction.

An alternative model that uses the standard CRP prior with no distance depen-

dence (and keeps all other assumptions and parameter values the same as the main

model) produced latent-cause assignments that are independent of test time. It thus

made similar predictions for the memory test and the spontaneous recovery test, fail-

ing to predict the spontaneous recovery of fear in standard extinction and gradual

reverse conditions (Figure 3.6B).
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Note that we are not committed here to the specific form of the distance depen-

dence and have not exhaustively tested other forms of recency-weighted or persever-

ative CRP priors (e.g., [76]), or different decay functions. Our claim is only that

an order-agnostic exchangeable prior distribution, as is commonly used in machine

learning applications to categorization, would not accord with the empirical data.

Rescorla-Wagner learning (recency-weighted estimates): difference be-

tween gradual extinction and gradual reverse

In the latent-cause inference framework, it is common to assume that the generative

strength of observations is fixed (though unknown) for each latent cause [65, 69].

Under this assumption, the optimal estimator of the shock probability for each latent

cause is the proportion of trials in which shocks appeared under that cause. This

assumption is at odds with the behavioral differences between gradual extinction

and gradual reverse, as both conditions had the same number of shocks and would

therefore predict identical test behavior (Figure 3.6C).

To explain the behavioral difference between gradual extinction and gradual re-

verse, we thus found it necessary to assume a recency-weighted estimate of generative

strength, such as given by the Rescorla-Wagner (RW) learning rule. Similar learn-

ing rules have been used in latent-cause inference models of associative learning and

memory modification [77, 75]. The RW rule learns a dynamic shock probability

through an error-correcting process that adjusts estimates proportionally to the error

in predicting the current observation. A fixed learning rate results in over-weighing of

recent experiences, effectively estimating the generative strength as an exponentially-

decreasing average of previous experiences. This is normative if animals assume that

the environment may change over time and track such changes. In our case, this

allows them to treat differently a decrease in shock probability in gradual extinction

versus an increase in gradual reverse. As a result, they make different latent cause
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assignments for gradual extinction and gradual reverse, and in turn, show distinct

levels of fear responses at test.

Collapsing uncertainty (MAP) between sessions: return-of-fear in gradual

reverse

Latent-cause inference involves evaluating the likelihood of all possible cause se-

quences for the past trials – from all trials being generated by one cause, to each

trial being generated by its own unique cause, through any combination in between.

Probabilistic inference means that the model does not commit to any of these as-

signment sequences; instead, all are likely during inference, and each is associated

with some non-zero probability. In particular, in all three extinction conditions, both

a one-cause sequence and a two-cause sequence are likely (Figure 3.3A). While the

two-cause sequence dominates in standard extinction, the assignments for gradual

extinction and gradual reverse are more uncertain, starting with similar probabilities

in both conditions and diverging through extinction. At the end of the extinction

session, the one-cause sequence establishes some advantage over the two-cause se-

quence for gradual extinction, and the opposite is true for gradual reverse. The MAP

assumption collapses this uncertainty over latent-cause sequences at the end of the

extinction session, obtaining the deterministic (and different) assignments shown in

Figure 3.2. Specifically, the model commits to the one-cause assignment for gradual

extinction, and the two-cause assignment for gradual reverse, accentuating the small

differences between these conditions at the end of the extinction session. Similar col-

lapsing of uncertainty has been applied in domains like perceptual decision-making

(e.g. [78]) to facilitate inference and decisions where estimating the full posterior

distribution is computationally intractable.

We found the MAP assumption to be necessary for predicting the return-of-fear

effect in gradual reverse. An alternative model that keeps the full distribution over
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latent causes throughout the experiment failed to predict the increase in freezing rate

during test for gradual reverse (Figure 3.6D). This is because the two-cause sequence

was deemed only somewhat more likely during test, which resulted in minimal return

of fear.

Perseveration: gradual change in behavior during extinction, and persis-

tence of return-of-fear during test

In the main model, we postulate that animals tend to repeat what they have been

doing in past trials with probability pr. Such perseverative behavior has been widely

observed in perceptual and value-based choice tasks, for both animals and humans

[79, 80, 81, 82]. In the current task, perseveration is important for predicting the

persistence of return-of-fear during the test session. Without this assumption, fear

responses will decrease rapidly in both standard extinction and gradual reverse condi-

tions, as early as the second test trial (Figure 3.6E). This is due to animals’ inference

of latent causes: experiencing one trial without shock is sufficient to infer that the

“safe cause” is active in the test session, and due to the distance-dependent CRP

prior, this inference comes to dominate latent-cause assignments at test. However,

such rapid reduction in freezing behavior was not seen behaviorally.

Simulations without perseveration also predicted freezing behavior that was overly

sensitive to shock and no-shock experiences during extinction (Figure 3.6E): in grad-

ual extinction and gradual reverse, simulated freezing rate jumped up following shocks

and dropped following no-shocks. Examining animals’ freezing rate during extinction

(by re-scoring of the original videos using a convolutional neural network [83], as the

middle trials during extinction session were not scored or reported in the original pa-

per) suggested that behavior did not reflect trial-by-trial shock delivery or absence;

on average, freezing rate noisily but gradually decreased through extinction session

in all three conditions (not shown). An alternative explanation for the more gradual
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behavioral change in extinction can be a lower learning rate in updating the gener-

ative strengths of latent causes. However, reducing the learning rate interfered with

latent-cause inference as it rendered animals less sensitive to shocks and thus biased

them towards the one-cause assignment. An alternative model where we halved the

learning rates predicted no return-of-fear in gradual reverse (Figure 3.6F).

We therefore used the perseveration assumption to account for both rapid learning

in fear conditioning and extinction, and gradual change in behavior. Additionally, we

note that due to local perseveration, the main model predicted an increase in freezing

rate at the beginning of the extinction session (compared to the end of conditioning

session; Figure 3.6A), potentially related to the well-documented “extinction burst”

phenomenon [84, 85].

3.4 Discussion

In this work, we use a latent-cause inference model to explain the differential effec-

tiveness of gradual versus abrupt (standard) fear-extinction procedures. The model

explains the return-of-fear effect commonly observed in standard extinction by pre-

suming that animals infer a new state of the world during extinction and thus form a

new association between tone and shock, as opposed to unlearning the original associ-

ation. Similar ideas have been proposed both under similar statistical inference frame-

work [53, 65] and through reinforcement-learning models with a state-classification

mechanism [54]. This explanation also aligns with decades-old suggestions that ex-

tinction results in learning of a new safe association that competes with the original

threat association, though does not override it [64]. The novelty of our work lies

in formulating the inference and learning processes, demonstrating with quantita-

tive simulation the differences between three extinction procedures, and verifying the

necessity of various model assumptions.
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We show through model simulations that animals make distinct inferences of la-

tent cause assignments under different extinction procedures: gradual extinction is

the most effective at extinguishing the original fear association because both condi-

tioning and extinction sessions are assigned to the same latent cause, and the gradual

reduction in shock helps animals acquire a decreasing estimate of shock probability,

leading to minimal return-of-fear during test. In contrast, the abrupt change in shock

frequency in the other two procedures (complete absence of shocks in standard extinc-

tion; abrupt reduction in shock appearance, followed by increasing shock frequency

in gradual reverse) results in the creation of a new “safe” latent cause to which all

subsequent no-shock trials are assigned. This new latent cause protects the old “dan-

gerous” latent cause from being updated by the no-shock experiences. As a result,

the original fear association remains intact and can resurface at test.

3.4.1 Additional model assumptions

We found that several additional model assumptions were needed to predict the be-

havioral findings: (1) a distance-dependent prior on latent-cause assignments that

used the passage of time to determine distance; (2) learning the dynamics of the en-

vironment through a recency-weighted rule such as the Rescorla-Wagner learning rule;

(3) reduction of uncertainty over the posterior distribution through MAP estimation

between sessions; (4) behavioral perseveration. Without each of these assumptions,

the model failed to replicate the higher freezing rates at test in standard extinction

and gradual reverse conditions in comparison to gradual extinction. Most of these

assumptions build on past models that have successfully explained a wide range of

phenomena in animal (and human) learning and decision-making, as we discuss be-

low. Moreover, the necessity of each assumption also suggests principles of animal

learning mechanisms in Pavlovian tasks and beyond.
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The distance-dependent CRP prior we used highlights the important role of time

in latent-cause inference, especially when behavior is examined at different time in-

tervals, or even on different time scales. We are not the first to propose such time-

dependency. Gershman and colleagues [75] used a similar distance-dependent CRP

prior (with a power-law temporal kernel) to explain how spontaneous recovery de-

pends on extinction-test interval, as well as why the effect of post-retrieval memory

modification is sensitive to memory age. Additional empirical evidence for time-

dependent inference process comes from work on extinction delay. Myers and col-

leagues [86] found that varying the delay between acquisition and extinction affected

the amount of return-of-fear: animals that experienced extinction trials 10 minutes

or 1 hour after acquisition showed little or no subsequent spontaneous recovery, rein-

statement or renewal effects; whereas those who had extinction trials 24 or 72 hours

after acquisition showed strong return of fear effects. This effect of extinction delay

cannot be explained by a latent-cause inference model without temporal dependency.

The distance-dependent CRP prior can explain these findings as a result of the de-

creasing probability of the extinction trials being generated by the same latent cause

as the acquisition trials when the delay between extinction and acquisition increases.

Thus, with a shorter delay (10 min or 1h), the animal is more likely to classify the

extinction trials into the same latent cause as the acquisition trials, which helps the

successful unlearning of the shock probability, and thus prevents the return of fear.

The importance of time is also reflected in the recency-weighted learning rule we

used. The Rescorla-Wagner learning rule has been widely used to model classical con-

ditioning. It has also been used in latent-cause inference models to explain compound

generalization in associative and causal learning [77] and memory modification [75].

Together, the distance-dependent CRP prior and the Rescorla-Wagner learning

rule imply specific beliefs that animals may have about the environment. Both mod-

eling assumptions reflect the animal’s inner model of the environment, i.e., whether
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they consider it as static or changing over time. According to the distance-dependent

CRP prior, latent causes that were last active a long time ago are less likely to be

active again, suggesting that the passage of time can lead to changes in the envi-

ronment, making older causes less likely. Similarly, the Rescorla-Wagner learning

rule over-weighs more recent experience, inherently capturing how the statistics of

observations within a latent cause may change over time. Alternative assumptions

(standard CRP prior and learning through exact Bayesian inference) are better suited

to static environments. The advantage of the current model over alternatives pro-

vides evidence that animals are capable of acquiring rich dynamics in their learning

environment, and that their inner model of the environment is in accord with the

actual changing nature of naturalistic environments.

We can further consider a more general approach to modeling learning in a chang-

ing environment: deriving the normative learning rule based on the generative model.

For example, the Kalman filter model [87] has been suggested as a model for esti-

mating the mean and standard deviation of a Gaussian reward distribution under the

assumption that it evolves over time2. Another option, normative for environments

in which the amount of reward changes at a constant rate, is to add a “momentum”

term (calculated as the running average of recent prediction errors) to the Rescorla-

Wagner learning rule [89].3 Future work can derive normative learning rules for the

three extinction procedures in the current experiment, and test whether they account

for behavior better than the Rescorla-Wagner learning rule we used.

Compared to the above two assumptions, the MAP assumption (collapse of the

posterior to its mode between sessions) is found less often in the animal-learning liter-

ature. This assumption, nevertheless, also reflects the effect of the passage of time on

inference, and can be construed as a result of memory consolidation (e.g., via replay

2In fact, Rescorla-Wagner learning can be seen as a special case of the Kalman filter with a fixed
Kalman gain and without tracking uncertainty [88]

3We also tested an alternative model with momentum; the results were largely consistent with
the RW learning rule. Thus, for simplicity, we used the more basic RW rule in the main model.
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of past events during sleep [90]). Through consolidation, animals may revisit their

learning experience in the previous session, and continue to update their belief over

latent causes accordingly. Such update can reinforce the most probable latent-cause

assignment, and eventually make it the only possibility, equivalent to a MAP esti-

mate. Similar consolidation mechanisms have been proposed during long inter-trial

intervals. For example, to explain memory modification, Gershman and colleagues

[75] introduced a “rumination” process taking place between the re-exposure of pre-

vious memory and the attempt to modify/extinguish it. Such rumination reinforces

the dominant belief of returning to the past context, and facilitates memory modifi-

cation. There is also extensive evidence on the superiority of spaced learning (with

longer intervals between training examples, including overnight session boundaries)

over massed learning, facilitated by memory consolidation [91], in both animals and

humans [92, 93, 94, 95].

From a normative perspective, MAP estimation may be justified to allow inference

in complex scenarios where the full distribution over latent causes is computationally

intractable. Because of the combinatorial explosion of possible latent-cause sequences

as more trials are experienced, any experience that unfolds over a sequence of events

quickly becomes intractable. It is thus reasonable to assume that the brain collapses

uncertainty over previous inference periodically (perhaps facilitated by large gaps

in experience, replay of experiences, and memory consolidation), to be able to con-

tinue building on past knowledge without necessarily maintaining all of it. Indeed,

Stocker and colleagues [78, 96] have shown that biases in human decision making

can be explained by postulating that people collapse parts of their posterior distribu-

tion between sequential decisions, essentially discarding beliefs that are inconsistent

with actions they have already made. Our MAP assumption is a similar form of

commitment to the most likely past beliefs over others.
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The MAP assumption provides novel theoretical predictions that can be tested in

future experiments. A direct test of the memory consolidation account of the MAP

estimation would be to reduce the time between extinction and test in the reinstate-

ment experiment. For example, conducting extinction, reinstatement and test all

within one day or even one session. If memory consolidation indeed facilitates the

collapse of the posterior distribution and strengthening of one interpretation of past

events, animals with no or less time between extinction and test should maintain the

probabilistic belief at test, and thus show less freezing in the gradual reverse condi-

tion. Our model does not differentiate between an abrupt collapse of the posterior

distribution and a gradual reduction of posterior uncertainty. To further examine the

process of uncertainty reduction, future work can manipulate the time interval be-

tween extinction and test, and examine how freezing rate at test changes as a function

of such time interval.

The reduction of uncertainty due to the MAP estimation may seem at odds with

the increase in uncertainty over time that results from the dynamic generative model

as discussed earlier. However, it is worth noting that the MAP reduction of uncer-

tainty affects categorization of past experiences, whereas the increase in uncertainty

pertain to predicting future experience. On the one hand, the collapse of the posterior

may suggest the limitation of animals’ representation of the world; perhaps animals

are able to learn a rich representation, but fail to maintain uncertainty about this

representation over long periods of time. On the other hand, MAP estimation can

also be seen as a method by which animals (and humans) build concise models of the

world.

Last but not least, the perseveration assumption suggests a value-free habitual

system that exists alongside a model-based system corresponding to the latent cause

inference mechanism in the current model. Such a dichotomy has been widely ob-

served in animal learning and decision-making [73]. The fact that animals’ behavior
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does not fully reflect their learned world model or even stimulus values underscores

the importance of accounting for common habitual behavior (e.g., perseveration, side-

bias, etc.) in modeling so that the habitual part of behavior will not mask the rich

learning mechanisms.

3.4.2 Related empirical results

In this work, we provided a quantitative and theoretical account explaining why grad-

ual extinction is more effective in permanently reducing fear than standard extinction

and gradual reverse procedures. We focused specifically on predicting the empirical

findings in Gershman et al. [21]; however, it is worth noting that there is other

evidence on the effectiveness of gradual extinction.

In a fear-extinction experiment with human participants [66], gradual extinction

was shown to prevent the return of fear better than standard extinction, as mea-

sured by startle response (although there were no effects for contingency rating or

skin-conductance response). Additional evidence comes from occasional reinforce-

ment experiments: having occasional reinforced trials during extinction (effectively

reducing the shock probability more gradually compared to standard extinction proce-

dure) has been shown to eliminate spontaneous recovery in both rodents and humans

[67, 68]. Similarly, in appetitive conditioning experiments, occasional presentations of

reinforcement in extinction slowed the re-acquisition of conditioned responses [97, 98],

suggesting unlearning during extinction rather than learning of a competing associa-

tion that would allow rapid relearning by activating the original association.

We note that seemingly opposing evidence was observed in a reinstatement ex-

periment by Rescorla [63], where gradual extinction was less effective than standard

extinction in preventing the reinstatement effect. However, the reminder shocks used

in this experiment were very weak (compared to other reinstatement experiments

reported in the same study: 0.5mA vs 3mA), and therefore may not have been per-
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Figure 3.7: Freezing rate comparison between model predictions (A,B) and
empirical results (C,D). Shown are the first and last four trials of extinction, the
beginning of the test session (before the first test trial; marked as trial 0), and the
four test trials. Panels C and D are reproduced from [21].

ceived as aversive stimuli by the animals [99]. Without valid reminder shocks, the

test trials would simply reflect the effect of extinction after a short delay (similar

to the long-term memory test in the spontaneous recovery experiment in Gershman

et al. [21]). Indeed, the gradual extinction group showed a higher conditioned re-

sponse than the standard extinction group in the memory test in Gershman et al.

[21] (t(30) = 3.05, p < .005), consistent with the findings by Rescorla [63].

3.4.3 Limitations: differences between model predictions

and empirical results

Although the current model captures key aspects of the empirical findings, its predic-

tions deviate from the experimental data quantitatively. First, the model correctly
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predicts the comparative differences between the three extinction conditions, but fails

to predict the absolute return-of-fear effects. It over-predicts the reduction of fear for

gradual extinction and gradual reverse, as compared to the empirical results (Figure

3.5). In fact, the model predicts lower fear responses in gradual extinction at test,

and no change in gradual reverse when compared to the end of extinction, whereas

animals showed minimal change and an increase in fear in these two conditions, re-

spectively. Similarly, the predicted freezing rate during extinction deviates from the

empirical results quantitatively (Figure 3.7).

However, it is worth noting that behavioral variability was profound in these ex-

periments. For instance, despite having the exact same procedures in conditioning

and extinction sessions, the extinction effects differed in spontaneous recovery and

reinstatement experiments (Figure 3.7). Specifically, during the last four trials of ex-

tinction, freezing rate was significantly different between the two experiments under

the same standard extinction procedure (one-way ANOVA: F (1, 22) = 4.38, p < .05;

there were no significant difference for gradual extinction or gradual reverse proce-

dures). These potentially different freezing rates at the end of extinction, neverthe-

less, served as the baselines for comparing test behavior in Figure 3.5, and provided

the “ground truth” for comparison with our simulation results. Given this variabil-

ity across animals and between experiments in the empirical findings, we decided

to forego matching the empirical results quantitatively, and instead focused on cor-

rectly predicting the comparative difference between extinction procedures: gradual

extinction being the most effective in reducing the return of fear, compared to either

standard extinction or gradual reverse.

Quantitative deviations between the model’s predictions and the empirical results

may also be due to non-linear mapping between estimated shock probability and

animals’ freezing behavior, which we did not model. Because the form of this mapping

was not the focus of the current work, we assumed a linear function for simplicity, but
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this is likely incorrect. Future work can design targeted experiments to investigate

the underlying mechanism of this mapping.

Finally, the model captures behavior at the group level but does not make pre-

dictions regarding individual differences, which were marked in the empirical results

(also observed in similar studies in humans [100]). To make individual predictions

with the current model, we can use different parameter values for each animal to cap-

ture their distinct learning, inference and behavioral processes. For example, animals

often demonstrate abrupt switching (rather than gradual changes) in behavior that

only seem gradual at the group level because different animals switch behavior at

different times [101]. This between-animal variability in change points may be the

result of different mapping functions from shock prediction to freezing rate. Another

possibility is that individual animals do not perform full Bayesian inference but only

take a small number of noisy samples from the probability distribution; in this case,

aggregating over a group of animals will result in average behavior that resembles

full inference, all the while each individual shows what seems like an idiosyncratic

pattern of behavior [102]. Under this explanation, the current model is only adequate

for explaining group-level behavior, and we need an additional sampling model to

capture individual behavior. Both accounts for individual differences are likely in the

task we modeled. We leave for future work to examine these sources of variability by

fitting models to individual animals’ behavior and comparing their predictions.

3.4.4 Conclusion

In sum, our work explains the effectiveness, or lack thereof, of different behavioral

manipulations aimed at reducing maladaptive fear responses. Our results suggest

that in acquiring and extinguishing fear responses, animals form a dynamic model of

the environment, using inference of latent causes to predict future events. When rep-

resenting and memorizing past experiences, however, our model suggests that animals
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summarize previous inference by collapsing distributions over potential latent-cause

explanations and preserving the most likely explanation. Our findings suggest that,

even in simple Pavlovian tasks such as fear extinction, animals’ behavior can reveal

a rich array of mechanisms of learning and representation.
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Chapter 4

Humans learn about complex rules

through value-based serial

hypothesis testing

The contents of this chapter were submitted for publication in: Mingyu Song, Persis

A. Baah, Ming Bo Cai, and Yael Niv. Humans combine value learning and hypothesis

testing strategically in multi-dimensional probabilistic reward learning.

All data and code are available at https://github.com/mingyus/.
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4.1 Introduction

Learning in a complex environment, with numerous potentially relevant factors and

noisy outcomes, can be quite challenging. For example, when learning to make bread,

a collection of decisions needs to be made, including the amount of yeast to use, the

flour-to-water ratio, the proof time, and the baking temperature. An inexperienced

baker can be clueless when facing these decisions, especially when the results are

variable even if following the same procedure: the ambient temperature may affect

rising, the oven temperature may not be as accurate as its marks, etc., making feed-

back unreliable.

Learning scenarios like this are quite common in real life, but have not been studied

systematically. In controlled, laboratory conditions, each of the key components

of such learning has traditionally been investigated separately. Decisions based on

combining multiple factors (features) are common in category learning tasks [103, 104]

where multi-dimensional rules determine the category judgements, although feedback

is often deterministic in these tasks. In contrast, the need to integrate and learn

from stochastic feedback has been widely studied in probabilistic learning tasks [105,

106, 107], but often with a simplistic rule that involves only one relevant feature

dimension. Finally, the freedom to determine learning examples and try out different

possibilities (rather than select among a few available options) is at the core of active

learning tasks. As very few tasks have combined all these components (but see [108,

109]), it remains unclear how people learn actively in an environment with complex

rules (with multiple and potentially an unknown number of relevant dimensions) and

probabilistic feedback. To study this, we developed a novel decision task: participants

were asked to configure three-dimensional stimuli by choosing what features to use in

each dimension, earning rewards that were probabilistically determined by features in

a subset or all of these dimensions. To earn as much reward as possible, participants
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needed to figure out which dimensions were important through trial-and-error, and

learn what specific features yielded rewarding outcomes in those dimensions.

Despite the computational challenge and combinatorial explosion of possible so-

lutions, human beings are remarkably good at solving such complex tasks. Usually,

after a few successful or unsuccessful attempts, the amateur baker will gradually fig-

ure out the rules for bread-making. Similarly, participants in above task improved

their performance over time, and learned to correctly identify rewarding features

through experience. To understand how they achieved this, we turned to the exten-

sive literature regarding two systems that support representation learning [110, 111]:

a rule-based system that explicitly represents and evaluates hypotheses, and a value-

based reinforcement-learning system that incrementally learns the value of stimuli

based on trial-and-error feedback. In previous studies, the two mechanisms were of-

ten examined separately, as which of them is used often depends on the specific task.

For instance, in probabilistic reward learning tasks, people have been shown to learn

through trial-and-error to identify relevant dimensions, and gradually focus their at-

tention onto the rewarding features in those dimensions [105, 106, 107]; in contrast,

in category learning, people seem to evaluate the probability of all possible rules via

Bayesian inference, with a prior belief favoring simpler rules [104]. However, the two

learning systems are likely simultaneously engaged in most tasks [112], and contribute

to different extents depending on how efficient they are in each specific setting. Di-

rect hypothesis-testing can be more efficient when fewer hypotheses are likely and

when feedback is relatively deterministic, whereas incremental learning may be more

beneficial with numerous possible combinations and stochastic outcomes.

Here, we systematically examined the integration of the two learning systems and

how it depends on task condition. Specifically, we varied task complexity by setting

the rules such that one, two, or all three dimensions of the stimuli were relevant

for obtaining reward; in addition, we manipulated whether such information (i.e.,
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rule dimensionality) was explicitly provided to participants. We fit computational

models that represent each learning system (and their hybridization) to participants’

responses, and compared how well they predicted participants’ choices. We found

evidence that people used both learning systems when solving our task, across all task

conditions. Furthermore, when participants were informed of the task complexity,

they used this information to set the balance between the two systems, relying more

on serial hypothesis testing when the task was simpler with fewer candidate rules, and

more on reinforcement learning when more rules were possible. Our findings shed light

on how the rule-based and value-based systems cooperate to support representation

learning in complex and stochastic scenarios, and suggest that humans can evaluate

their effectiveness based on task complexity and make strategic arbitration between

them.

4.2 Experiment and behavior results

4.2.1 The “build icon” task

In our task, stimuli were characterized by features in three dimensions: color (red,

green, blue), shape (square, circle, triangle) and texture (plaid, dots, waves). In

each of a series of games, a subset of the three dimensions was relevant for reward,

meaning that one feature in each of these relevant dimensions would render stimuli

more rewarding (henceforth the “rewarding feature”).

To earn rewards and figure out the underlying rule, participants were asked to

configure stimuli (“icons”) by selecting features for any (zero to all) of the dimensions

(Figure 4.1); for dimensions in which they did not make a selection, the computer

would randomly select a feature. The resulting stimulus was then shown on the

screen, and the participant would receive probabilistic reward feedback (one or zero

points) based on the stimulus: the more rewarding features included in the stimulus,
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Done
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You won 
1 point!

RT < 5s

Stimulus0.5s
Feedback & ITI

2.5s
Done

Figure 4.1: The build-icon task. Participants built stimuli by selecting a feature in
any (zero to three) of the three dimensions (marked by black squares). After hitting
“Done”, the stimulus showed up on the screen, with features randomly determined
for any dimension in which participant did not make a selection (in this example,
circle was randomly determined). Reward feedback was then shown.

Table 4.1: The reward probability of a stimulus in each game type (1D, 2D, and 3D-
relevant games) was determined by the number of rewarding features in the stimulus.

Game type
Number of rewarding features

0 1 2 3
1D-relevant 20 % 80% – –
2D-relevant 20 % 50% 80% –
3D-relevant 20 % 40% 60% 80%

the higher the reward probability, with the lowest reward probability being p = 0.2

and the highest p = 0.8 (see Table 4.2.1). The participant’s goal was to earn as many

reward points as possible.

Each game had one, two, or three relevant dimensions (henceforth 1D-, 2D-, and

3D-relevant conditions). This information was provided to participants in half of the

games (“known” condition) and the other half was designated as “unknown” games.
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This resulted in six game types in total. Each participant played three games of each

type for a total of 18 games, in a randomized order. Each game was comprised of 30

trials. The relevant dimensions and rewarding features changed between games.

4.2.2 Participants and procedure

Participants were recruited online from Amazon Mechanical Turk. They received a

base payment of $12 for completing the task, with a performance-based bonus of

$0.15 per reward point earned in three randomly-chosen games (one for each task

complexity).

Participants went through a comprehensive instruction phase before starting the

real experiment. During the instruction, they were first introduced to the “icons”,

and asked to build a few examples. They were then explained the general rules of the

experiment, including the complexity levels and their respective reward probabilities

(as in Table 4.2.1). They were tested about these rules and probabilities with a set of

multiple-choice questions. For each task complexity, they were given an example rule,

and asked about the reward probability of a few stimuli to test their understanding.

In addition, they did a practice game per each complexity with the rules informed.

For the understanding tests, participants had to answer all questions correctly, within

a few attempts (three times for most questions, with the exception of five times for

questions on the general rules), in order to proceed to the real games. During the real

games, participants were required to respond within 5 seconds on each trial. Those

who missed five trials consecutively were stopped from continuing the experiment.

After the instruction phase, the main experiment commenced. In “known” games,

the number of relevant dimensions was instructed before the start of the game in

the form of a “hint”; participants were, however, never told which dimensions were

relevant or which features were more rewarding. The start of “unknown” games was

also signaled; however, no hint was provided in these games. At the end of each game,
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participants were asked to explicitly report, to their best knowledge, the rewarding

feature for each dimension, or indicate that this dimensions is irrelevant to reward,

as well as their confidence level (0-100) in these judgements. After the experiment,

participants received a performance bonus proportional to the points they earned in

three randomly-selected games.

106 participants completed the entire experiment, out of which 4 were excluded

from our analyses due to poor performance: an overall reward probability of less than

0.468 (two standard deviation lower than the group average).

4.2.3 Learning performance and choice behavior

Across all six game types, participants’ performance improved over the course of a

game, with faster learning in less complex games (games with fewer relevant dimen-

sions) (Figure 4.2A; a three-way repeated measures ANOVA on reward probability

found significant effects including main effects of trial index: F29,5858 = 329.5, p <

.001, and task complexity: F2,5858 = 206.111, p < .001, the three-way interaction:

F58,5858 = 1.946, p < .001, and two two-way interactions, between trial index and

task complexity: F58,5858 = 20.6, p < .001, and between task complexity and task

instruction knowledge: F2,5858 = 6.99, p = .00127). The overall worse performance in

more complex games was not necessarily a failure of learning, but rather the result

of limited experience (only 30 trials per game), as participants’ average reward rate

across all games was 90.2% of that of an (approximate) optimal agent1 playing this

same task. Between the “known” and “unknown” games, participants’ performance

was better when informed of the game complexity in 3D-relevant games (a significant

main effect of task instruction in a two-way repeated measures ANOVA on reward

probability for 3D-relevant games only: F1,101 = 11.3, p = .001, uncorrected, same for

1It is computationally intractable to solve the optimal policy for this task. Therefore we trained
a DQN network [17] on the task to approximate the optimal solution, and compared participants’
performance with this well-trained DQN agent.
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Known
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Max
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Figure 4.2: Participants’ behavior in the “build-icon” task. (A, B): Per-
formance and choices over the course of a game, by game type. (A) Par-
ticipants’ average reward probability (calculated based on the number of rewarding
features in their configured stimulus), over the course of 1D-, 2D- and 3D-relevant
games (left, middle and right columns). Red and blue curves represent “known” and
“unknown” conditions, respectively. Shading represents 1 s.e.m. across participants.
Dash-dotted lines represent the maximum reward probability in principle (p = 0.8);
dashed lines represent the chance level. (B) Same as in (A), but for the number of
features selected. (C, D): Responses to post-game questions regarding the
rewarding features in each game condition. (C) Average number of correctly-
identified rewarding features; (D) Average number of false positive responses, i.e.,
falsely identifying irrelevant dimension as relevant. *** p < .001.
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tests below); there was no effect of task instruction on performance in simpler games

(1D-relevant: F1,101 = 3.28, p = .073; 2D-relevant: F1,101 = 0.0007, p = .98).

Participants also showed distinct choice behavior in different game types (Figure

4.2B): a three-way repeated measures ANOVA on the number of features selected

found significant main effects of trial index (F29,5858 = 26.9, p < .001), task complexity

(F2,5858 = 95.2, p < .001)), and task instruction knowledge (F1,5858 = 11.8, p = .004)),

a significant three-way interaction effect (F58,5858 = 5.32, p < .001), and two-way

interaction effects for all pairs of variables (all p < .001). In “known” games, the

more dimensions participants were informed to be relevant, the more features they

chose on each trial on average (mixed-effects linear regression slope: 0.29 ± 0.03,

p < .001); in “unknown” games, unsurprisingly, the number of selected features was

not different between game types (p = .47).

We then analyzed participants’ responses to the post-game questions (Figure

4.2C,D; see full results in Figure 4.7). A two-way repeated measures ANOVA on cor-

rect responses (i.e., correctly-identified rewarding features) found a significant main

effect of task complexity (F2,202 = 273.7, p < .001), and a significant interaction effect

(F2,202 = 21.3, p < .001). A similar ANOVA on false positive responses (i.e., the num-

ber of irrelevant dimensions falsely identified as relevant) found significant main ef-

fects of both task complexity (F1,101 = 32.0, p < .001) and task instruction knowledge

(F1,101 = 93.3, p < .001), and a significant interaction effect (F1,101 = 90.8, p < .001).

Specifically, in 1D-relevant games, participants correctly identified a similar number

of rewarding features between “known” and “unknown” conditions (Figure 4.2C; post

hoc Tukey test: t101 = 1.81, p = .46), consistent with the choice behavior in Figure

4.2A. They were, however, more likely to falsely identify an irrelevant feature as rele-

vant (4.2D; t101 = −6.27, p < .001), indicating that not knowing the dimensionality of

the underlying rule led the participants to incorrectly attribute rewards to irrelevant

features, which might be the reason of a higher number of features selected in the
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“unknown” condition (Figure 4.2B). In contrast, in 3D-relevant games, participants

reported to have identified more correct features in the “known” condition than in

“unknown” condition (Figure 4.2C; t101 = 13.53, p < .001), consistent with the better

learning performance in “known” 3D-relevant games observed in Figure 4.2A.

4.3 Computational modeling

4.3.1 Two learning systems

To characterize participants’ learning strategy and explain the behavioral differences

between game conditions, we considered two candidate learning systems [111, 112]:

an incremental value-based system that learns the value of stimuli based on trial-

and-error feedback, and a rule-based system that explicitly represents possible rules

and evaluates them. We tested computational models representing each of these

two systems, as well as a hybrid combination, by fitting each model to participants’

trial-by-trial choices and comparing how well they predict task behavior.

We first briefly describe each model in this section, and provide the detailed equa-

tions in the next section.

The value-based system was captured by a feature-based reinforcement learning

model [105]. Reinforcement learning is commonly used to model behavior in proba-

bilistic reward-learning tasks, where participants need to accumulate evidence across

multiple trials to estimate the value of each choice. In particular, we used the fea-

ture RL with decay model from prior work [105] with a task similar to ours.

This model assumes that participants learn the values of the nine features using the

Rescorla-Wagner update rule: feature values in the current stimulus are updated pro-

portional to the reward prediction error (the difference between the outcome and the

expected value). In addition, values of features not present on the current stimulus

decay towards zero. The expected reward for each choice (i.e., combination of fea-
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tures selected) is calculated as the sum of its feature values. At decision time, the

probability of each choice is determined by comparing the expected reward for all

choices using a softmax function.

In contrast to the value-based strategy, the rule-based strategy directly evaluates

hypotheses regarding what combinations of features are relevant for obtaining more

rewards (the set of rewarding features) in a game, which we refer to as “rules”. In

“known” games, there are 9, 27 and 27 possible rules for 1D-, 2D- and 3D-relevant

games, respectively; in “unknown” games, all 63 rules are possible.

There are multiple possibilities for how people learn the correct rules. One is to

use the Bayesian principle to evaluate the probability that each rule is the correct

one; we term this a Bayesian rule learning model. After each outcome, this model

optimally utilizes feedback information to calculate the likelihood of each candidate

rules, and combines this with the prior belief of the probability that each rule is

correct (initially assumed to be uniform across all rules that accord with the “hint”)

to obtain the posterior probabilities of each rule. The expected reward for a choice

is then calculated by marginalizing over the posterior belief of all possible rules, and

the final choice probability was determined by a softmax function over the expected

reward from each choice (as in the previous model). In a multi-dimensional category

learning task, a similar Bayesian rule learning model has been shown to characterize

how people learn categories better than reinforcement learning models [104].

Bayesian inference is computationally expensive and memory-intensive. A sim-

pler alternative for the rule-base strategy is serial hypothesis testing, which assumes

that people only test one rule at a time: if the evidence supports their hypothesis,

they will continue with it; otherwise, they switch to a different rule, until the correct

one is found. The idea of serial hypothesis testing has long roots in category learn-

ing literature [113, 114]. Recently, it has also been applied in probabilistic reward

learning tasks [115] and shown to be a better account of human behavior than the
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Figure 4.3: A diagram of the serial hypothesis testing models.

Bayesian model. Following [115], we consider a random-switch serial hypothesis-

testing model (random-switch SHT model; Figure 4.3): it assumes that people test

hypotheses about the underlying rule one at a time. When testing a hypothesis, they

estimate its reward probability by counting how often they get rewarded when mak-

ing choices accordingly. The lower this estimate, the more likely they will abandon

the current hypothesis and switch to testing a random different one. We assume that

people’s choices are often consistent with their hypotheses, but with a small (p = λ)

probability, they lapse and make random choices.

The SHT and RL systems are not necessarily mutually exclusive. We thus also con-

sidered a hybrid model by incorporating RL-acquired feature values into the choice of

a new hypothesis in the serial hypothesis testing model. In particular, when switching

hypotheses, the hybrid model favors hypotheses that contain recently rewarded fea-

tures. We term this model value-based serial hypothesis testing model (value-

based SHT model; Figure 4.3).
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4.3.2 Computational models

Feature-based reinforcement learning with decay model

The feature RL with decay model learns the values of nine features (denoted by

fi,j; i and j are indices for dimensions and features respectively) using the Rescorla-

Wagner update rule, with separate learning rates for features that were selected by

the participant (η = ηs) and those that were randomly determined (η = ηr). Values

for features not in the current stimulus st are decayed towards zero with a factor

d ∈ [0, 1]. ηs, ηr and d are free parameters.

Vt(fi,j) =


Vt−1(fi,j) + η(rt − ER(ct)), if j = sit

d · Vt−1(fi,j), if j 6= sit

(4.1)

where rt is the reward outcome (0 or 1) on trial t, and sit indicates the feature on

dimension i of st.

At decision time, the expected reward (ER) for each choice c is calculated as the

sum of its feature values, with ci denoting the feature on dimension i of choice c:

ER(c) =
∑
i

V (fi,ci), (4.2)

The average value of all three features is used for dimensions with no selected features.

The choice probability is then determined based on ER(c) using a softmax func-

tion, with β as a free parameter:

P (c) =
eβ·ER(c)∑
c′ e

β·ER(c′)
. (4.3)
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Bayesian rule learning model

The Bayesian rule learning model maintains a probabilistic belief distribution over

all possible hypotheses (denoted by h). After each trial, the belief distribution is

updated according to Bayes’ rule:

P (h|c1:t, r1:t) ∝ P (rt|h, ct)P (h|c1:t−1, r1:t−1).

At decision time, the expected reward for each choice is calculated by marginalizing

over the belief distribution:

ER(c) =
∑
h

P (h)P (r|h, c).

The expected reward is then used to determine the choice probability as in Equation

4.3.

We note that this model is not strictly optimal, even with no decision noise, as it

maximizes the reward on the current trial, but not the total reward over a game.

Random-switch serial hypothesis testing (SHT) model

The random-switch SHT model assumes the participant tests one hypothesis at any

given time. We do not directly observe what hypothesis the participant is testing, and

need to infer that from their choices. We do so by using the change point detection

model in [115]. The basic idea is to infer the current hypothesis (denoted by ht) from

all the choices the participant has made and the reward outcomes they received so

far in the current game (together denoted by D1:t−1); see Supplementary Methods for

implementation details. Once we obtain the posterior probability distribution over
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the current hypothesis (ht|D1:t−1), we can then use it to predict choice:

P (ct|D1:t−1) =
∑
ht

P (ct|ht)P (ht|D1:t−1)

In order to calculate P (ht|D1:t−1), we consider the generative model of partici-

pant’s choices. First, we determine the participant’s hypothesis space: In “known”

games, participants were informed about the number of relevant dimensions, which

limits the set of possible hypotheses in these game. The way people interpret and

follow instructions, however, may vary. Thus, we parameterize the hypothesis space

(i.e., people’s prior over all possible hypotheses) with two weight parameters wl and

wh (before normalization):

P (h) ∝


wl if D(h) < D

1 if D(h) = D

wh if D(h) > D

(4.4)

Here, D(h) is the dimensionality of hypothesis h (how many rewarding features are in

h), and D is the number of relevant dimensions of the current game. If a participant

strictly follows the instruction, wl = wh = 0, i.e., only hypothesis with the same

dimensionality as the instruction is considered to be possible; if they do not use the

instruction information at all, wl = wh = 1, i.e., all 63 hypotheses are considered to

be equally likely. For “unknown” games, the average P (h) of 1D, 2D and 3D “known”

games is used.

The generative model of participant’s choice behavior contains three parts: the

hypothesis-testing policy (whether to switch hypotheses or stay), the hypothesis-

switch policies (what the next hypothesis is), and the choice policy. The first two

policies together determine the transition from the hypothesis on the last trial to
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the current one, and the choice policy determines the mapping between the current

hypothesis and choice.

Following [115], we consider the following hypothesis testing policy: on each trial,

the participant estimates the reward probability of the current hypothesis. Using a

uniform Dirichlet prior, this is equivalent to counting how many times they have

been rewarded since they started testing this hypothesis. The estimated reward

probability is then compared to a soft threshold θ to determine whether to stay

with this hypothesis or to switch to a different one:

Pr(stay) =
1

1 + e−βstay(P̂reward−θ)
, (4.5)

where P̂reward = reward count +1
trial count+2

is the estimated reward probability, and βstay and θ are

free parameters. If the participant decides to switch, they randomly switching to any

other hypothesis according to the prior over hypotheses specified in Equation 4.4 (i.e.

the random hypothesis-switch policy):

P (ht) =


Pr(stay), if ht = ht−1

(1− Pr(stay)) P (ht)∑
h 6=ht−1

P (h)
, if ht 6= ht−1

(4.6)

We use epsilon-greedy as the choice policy: participants’ choices are assumed to be

aligned with their hypotheses most of the time, with a free-parameter lapse rate of λ.

Value-based serial hypothesis testing model

The value-based SHT model is the same as random-switch SHT model, except for

using a value-based hypothesis-switch policy. It maintains a set of feature values up-

dated according to feature RL with decay model as in Equation 4.1 (but with a single

learning rate), and calculates the expected reward for each alternative hypothesis by

adding up its feature values, similar to Equation 4.2 but for h instead of c. The
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probability of switching to ht 6= ht−1 is:

P (ht) = (1− Pr(stay))
eβswitch·ER(ht)∑

h′ 6=ht−1
eβswitch·ER(h′)

, (4.7)

where βswitch is a free parameter.

4.3.3 Model fitting and model comparison

We fitted the models to each participant’s data using maximum likelihood estima-

tion. We used the minimize function (L-BFGS-B algorithm) in Python package

scipy.optimize as the optimizer; each optimization was repeated for 10 times with ran-

dom starting points. Models were evaluated with leave-one-game-out cross-validation:

the likelihood of each game was calculated using the parameters obtained from fitting

the other 17 games; the average likelihood per trial across all games was reported.

4.3.4 Evidence for both learning systems

The model comparison results are shown in Figure 4.4A. Among all four models, the

Bayesian rule learning model, even though optimal in utilizing the feedback informa-

tion, showed the worst fit to participants’ choices (likelihood per trial: 0.045± 0.003;

mean ± s.e.m.). This was potentially because the large hypothesis space (up to 63

hypotheses) made it implausible for participants to perform exact Bayesian inference.

Both the feature RL with decay model and the random-switch SHT model showed

better fits (likelihood per trial: 0.118± 0.008 and 0.160± 0.009, respectively). Com-

pared to the Bayesian model, both models require lower computation and memory

load: the RL model learns nine feature values individually and later combines them;

the random-switch SHT model limits the consideration of hypotheses to one at a time.

The hybrid value-based SHT model fit the data best (better than either component
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Figure 4.4: Model comparison supports both reinforcement learning and
serial hypothesis testing strategies. (A) Geometric average likelihood per trial
for each model (i.e., average total log likelihood divided by number of trials and
exponentiated). Higher values indicate better model fits. Dashed lines indicate the
chance level. (B, C) Simulation of the best-fitting value-based SHT model. The
same learning curves as in Figure 4.2 but for model simulation.
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model; likelihood per trial: 0.202 ± 0.009), suggesting that participants used both

learning strategies when solving this task.

There was additional evidence for the involvement of both learning systems in

participants’ behavior. The rule-based system was evident from the influence of

task instructions: both the numbers of features selected (Figure 4.2B) and the re-

ported rewarding features in the post-game questions (Figure 4.2C,D) differed be-

tween “known” and “unknown” conditions. There is no direct way to incorporate

such influences in a reinforcement learning model, but a rule-learning model can

easily do so, for instance, by constraining the hypothesis spaces according to the in-

structions. On the other hand, the influence of value-based learning was evident in

the order in which participants clicked on features to make selections. In most cases,

participants followed the spatial order in which dimensions appeared on the screen,

either top-to-bottom or the reverse. When the clicks violated the spatial orders, how-

ever, they followed the order of learned feature values, starting from the most valuable

feature2, at a frequency significantly above chance (t101 = 7.63, p < .001). Such be-

havior of following the order of learned feature values instead of the spatial order

was more frequent in trials when participants switched hypotheses than when they

continued testing the same hypothesis (t101 = 5.71, p < .001; in this analysis, switch

trials were identified based on changes in choice, for simplicity), further supporting

the value-based SHT model.

In sum, participants’ strategies in this task could not be explained by either rein-

forcement learning or serial hypothesis testing strategies alone. The combined hybrid

model explained participants’ behavior best, also capturing the dependence of per-

formance on task complexity (Figure 4.4B) and the qualitative differences between

choice curves in “known” and “unknown” conditions (Figure 4.4C), which neither

component model could capture (Figure 4.6).

2This result held regardless of which model we used to calculate value, the feature RL with decay
model or the hybrid model.
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A B

Figure 4.5: Strategic balance of two learning systems. (A) The contribution of
serial hypothesis testing (SHT) was inversely correlated with reaction time such that
participants who responded faster used SHT to a greater extent. (B) The contribution
of reinforcement learning (RL) was correlated with average reward rate – participants
for whom adding RL in the hybrid model more greatly improved their model fits
earned more rewards on the task, on average. Each dot represents one participant.
(C, D) Contribution of RL and SHT for each game type. Error bars represent 1
s.e.m. across participants. The contribution of each component is measured as the
difference in likelihood per trial between the hybrid value-based SHT model and the
other component model (SHT: the feature RL with decay model; RL: the random-
switch SHT model).

4.3.5 The contribution of the two systems depends on task

complexity

Given evidence that participants used both learning strategies in this task, the next

question is to what extent each system contributed to decision making. We addressed

this question by comparing the hybrid model with the two component models: the

difference in likelihood per trial between the hybrid model and each component model
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was taken as a proxy for the contribution of the mechanism not included in the

component model.

Across all participants, a higher contribution of SHT was associated with a faster

reaction time (Figure 4.5A; r = −0.27, p = .01), and a higher contribution of RL

was associated with a higher reward rate (Figure 4.5B; r = 0.23, p = .02); the other

two correlations (between reaction time and RL, and between reward rate and SHT)

were not significant (both p > .1). These results suggest that, comparatively, serial

hypothesis testing was an overall faster and less effortful strategy; although reinforce-

ment learning may be slower, augmenting hypothesis testing with values yielded more

reward.

To optimize for reward and reduce mental effort costs, it is advantageous to rely on

the serial hypothesis testing strategy when the task is simpler, for instance, in lower-

dimensional games with smaller hypothesis spaces. Indeed, when tested separately,

the correlation between reward rate and contribution of RL was only significant for

2D- and 3D-relevant games (1D: r = −0.03, p = .75; 2D: r = 0.27, p < .01; 3D:

r = 0.32, p < .01; uncorrected). In contrast, with a larger hypothesis space, serial

hypothesis testing is less efficient, and there should be a higher incentive to use the

value learning strategy.

We indeed observed such a strategic trade-off between the two learning systems:

in “known” games, the contribution of hypothesis testing decreased as the dimen-

sionality of the task increased (Figure 4.5C; estimated slope in a mixed-effect linear

regression: −0.0631 ± 0.0051, p < .001), whereas the contribution of value learn-

ing increased with task complexity (Figure 4.5D; estimated slope: 0.0178 ± 0.0013,

p < .001). In contrast, in “unknown” games, in which task complexity informa-

tion was unavailable to participants, the contribution of the two mechanisms was

more stable across game conditions (estimated slopes: −0.0144 ± 0.0042 for SHT,

p < .001; −0.0011±0.0012 for RL, p = .389; a significant three-way interaction effect
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in a repeated measures ANOVA on likelihood difference per trial in Figure 4.5C,D:

F (2, 202) = 47.9, p < .001). Taken together, these results suggest that participants

took advantage of information regarding task complexity to strategically balance use

of two complementary learning mechanisms.

4.4 Discussion

Using a novel “build-icon” task, we studied learning of multi-dimensional rules with

probabilistic feedback as a proxy for real-world learning in situations where it is

unknown a priori what aspects of the task are relevant to solving it, and where learn-

ers have agency to intervene on the environment and test hypotheses. In our task,

participants created stimuli and tried to earn more rewards by identifying the pre-

determined rewarding features. Participants performed this task at various known or

unknown complexity levels (i.e., rewarding features on one, two or three stimulus di-

mensions). They demonstrated learning in all conditions, with their performance and

strategies influenced by task condition. Through behavioral analyses and computa-

tional modeling, we investigated the use of two distinct but complementary learning

mechanisms: serial hypothesis testing that evaluates one possible rule at a time and

is therefore simple and fast in response, but results in slow learning when many rules

are possible and must be tested sequentially; reinforcement learning that learns about

all features in parallel and is more accurate in the long run, but requires maintaining

and updating more information. We found that a hybrid model that incorporated

the advantages of both mechanisms explained participants’ behavior the best. In

addition, we showed that human participants used knowledge of task complexity to

gauge which mechanism is more suitable, demonstrating a strategic balance between

the two. Specifically, they tended to use the simpler and faster serial hypothesis

testing strategy when they knew that fewer dimensions matter in the decision, but
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relied more on incrementally learning feature values when multiple dimensions were

important.

The current study connects large bodies of work on reward learning and cate-

gory learning in multi-dimensional environments. Previous studies have extensively

investigated how humans learn about complex but deterministic categorization rules

[111, 103, 104], as well as how they learn through trial-and-error to identify a single

relevant dimension [105, 116, 117, 118]. The former type of tasks are hard to learn

because of the unknown form of the underlying rules, while the latter tasks focus

on how humans integrate information in stochastic environments. Both are common

challenges for human decision-making, and they often co-occur in daily tasks – in

new situations, we often do not know a priori what aspects of the task are relevant

to its correct solution, and feedback may be stochastic, not only due to task prop-

erties, but also caused by the decision maker’s poor control over task factors in the

beginning. Therefore, we imposed both challenges in the current task to investigate

human learning strategies under these complex scenarios. Our work also helps unite

the various findings on value-based or rule-based strategies in previous studies. We

show that learning in complex and stochastic environments engages both systems.

In fact, participants’ strategy lies on a spectrum, with flexible arbitration between

the two systems based on which is more efficient under current task condition. This

can potentially explain why value-based strategies are often observed in probabilistic

learning tasks [105, 106, 107], and rule-based strategies often in category learning

tasks [104].

A few studies have pursued a similar path. For example, [108] studied a simi-

lar probabilistic reward learning task with multiple relevant dimensions. They tested

hypothesis-testing strategies based on values learned with näıve RL models. Through

model comparison, they showed that values learned alongside hypothesis testing were

carried over when hypotheses switched, consistent with our value-based SHT model.
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The novelty of our work is in systematically manipulating the complexity of the

environment and people’s knowledge about it, to help provided a comprehensive un-

derstanding on how people’s learning strategy adapts to different situations.

Still, we considered only a simple linear combination of multiple dimensions to

determine reward: each relevant dimension contributed equally to reward probability,

in an additive manner. In real life, the composition can be more complex, with

unequal weights for different dimensions [118, 119], and potential interactions between

dimensions. We postulate that similar hybrid strategies will be adopted regardless.

However, it can be hard to model the hypothesis-testing strategy in such scenarios,

due to the much larger and potentially ambiguous hypothesis space. An important

question is how do people construct their hypothesis space, and how likely do they

deem each hypothesis a priori. People may favor simpler hypotheses [120]; they may

not have a fixed hypothesis space to begin with, but construct new hypotheses only

when the existing ones can no longer account for observations [52], or they may modify

their existing hypotheses on the go with small changes [121].

It is worth noting the unique free-configuration design of the current task. In

most representation-learning tasks, stimuli (i.e., the combination of features) are pre-

determined, and participants are asked to select between several available options,

or make categorization judgements. These tasks are easy to perform, but it is hard

to isolate participants’ preference over single features. Our task enabled us to di-

rectly probe people’s preference (or lack thereof) in each of the three dimensions.

In addition, we were able to hold baseline reward probability constant across differ-

ent game types (participants responding randomly would always earn reward with

p = 0.4) while varying the complexity of underlying rules, which avoided providing

additional information on rule complexity in “unknown” games due to the baseline

reward rate. This would have been hard to achieve with the more commonly used

alternative-choice design. The free-configuration task also resembles many real-life
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decisions where choices across multiple dimensions have to be made voluntarily, from

ordering a pizza takeout, to planning a weekend getaway trip.

Along with these advantages, the active-learning free-configuration design may

also alter the strategy people use, compared to a passive learning scenario. On the

one hand, free-choice may encourage hypothesis testing, making this strategy more

efficient by allowing participants to seek direct evidence on their hypotheses. On the

other hand, learning may be hindered due to confirmation bias, commonly observed

in self-directed rule-learning tasks (aka “positive test strategy” [122]). Indeed, partic-

ipants over-estimated the number of rewarding features in 1D “unknown” games as

compared to “known games” (Figure 4.2D), suggesting that they failed to prune their

hypotheses when the underlying rule was simpler. To fully understand the impact of

free choice, future work can compare active and passive settings with a “yoked” de-

sign. This can help understand whether the findings reported here can be generalized

to passive-learning tasks, and what may be unique to the active-learning setting.

To model the integration of the two learning strategies, we introduced the hybrid

value-based SHT model. The assumptions in this model are relatively minimal, which

can be a reason why the hybrid model failed to quantitatively predict the number of

features selected by participants (Figure 4.4C). We explored several alternatives for

the model assumptions (Figure 4.8; see Methods for details): (1) not always testing a

hypothesis: if none of the hypotheses is high in value, the participant can decide not

to test a hypothesis, and let the computer configure a completely random stimulus

instead; (2) flexible threshold for determining whether to switch hypothesis or not,

based on reward probability of the corresponding game condition (Table 4.2.1); (3)

favoring choices that are supersets of the current hypothesis: rather than designing

stimuli consistent with the current hypothesis (with a lapse rate), participants may

tend to select more features than what their hypothesis contains (that is, they tend

to select features on dimensions not specified by the current hypothesis). The first
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and third alternative assumptions improved model fits, but the second did not. We

then considered a “full” model that used the better alternative for each assumption.

This more complex model improved average likelihood per trial on holdout games by

0.033 ± 0.006, which is a significant improvement. In terms of capturing the depen-

dency of choices and performance on game condition, however, this model behaved

similarly to the original hybrid model (Figure 4.6): both models under-predicted the

differences in the number of selected features between “known” and “unknown” con-

ditions, compared to the empirical data. For simplicity, we therefore reported the

original hybrid model in the Results.

The flexibility of the value-based SHT model opens up the space for exploring

more complex hypothesis-testing strategies. For instance, hypotheses may be formed

in a hierarchical manner when the rule complexity is unknown, i.e., participants may

first reason about the dimensionality of the game, and then the exact rule. Currently,

the hypothesis-switching policy depends only on values, but the complexity of the

rule may also play a role: participants may start from simpler rules, and switch to

more complex rules, as suggested in the SUSTAIN model [123]. Another promising

direction is to test multiple hypotheses in parallel. In the current model, only one

hypothesis is tested at a time, yet participants may consider multiple possibilities

simultaneously, adding and removing hypotheses flexibly. Last, the current model

assumes that learning of feature values happens in parallel to and independently of

hypothesis-testing; however, value learning may also be affected by hypothesis testing,

for example, the amount of value update can be gated by the current hypothesis

[124, 112]. The current modeling framework (and openly accessible data) can be used

in future work to systematically examine these and other alternative models.
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Full 
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Figure 4.6: Learning curves for data and model simulations. The top row and
the fourth row are the same as Figures 4.2A,B and 4.4B,C, respectively.

Figure 4.7: Full results of post-game responses to questions about the rewarding
features in each game condition.
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Test hypothesis?

Yes

Based on reward probs

Always Sometimes

RandomValue-based

Lapse Selecting more
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Switch hypothesis or stay?
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What choice?
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Figure 4.8: Variants of the serial hypothesis testing model. (A) A diagram of
the serial hypothesis testing models. Behavioral and model variables are presented
in circles, and model assumptions are presented in white boxes. Different variants on
each model assumption are presented in colored boxes: in light gray are the assump-
tions adopted by the baseline model, and in other colors are those used in the model
variants. (B) Difference in average likelihood per trial between variants of the SHT
models and the baseline model (the value-based SHT model). All models except the
full model are only different from the baseline model by one assumption as noted in
the label; the full model adopts the better alternative in every assumption. Bar colors
correspond to those in panel A, except for the full model (in white).
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4.5 Supplementary Methods

4.5.1 Variants of the value-based SHT model

We consider a few variants of the value-based SHT model, by modifying the

hypothesis-testing policy and the choice policy of the baseline value-based SHT

model described above.

Not always testing hypothesis

In the experiment, the participant could choose not to select any feature, and let the

computer configure a random stimulus. In fact, many participants did so, especially in

the beginning of each game, which was potentially due to not having a good candidate

hypothesis in mind. To model this inability to come up with hypotheses, we add a

soft threshold on hypothesis testing: if the expected reward of the best candidate

hypothesis is even below a threshold θtest, participants will be unlikely to test any

hypothesis:

Pr(test) =
1

1 + e−βtest(maxh(ER(h))−θtest)

βtest and θtest are free parameters. This mechanism is applied to the first trial of each

game and at hypothesis switch points.

Alternative hypothesis-testing policy: using reward probability informa-

tion

In the experiment, participants were informed of the reward probabilities for all game

conditions (Table 4.2.1), which is not used by the baseline model. One way to use

such information is to calculate a target reward probability RPtarget(h|D,D(h)): the

highest possible reward probability for the current hypothesis (if all features in the

current hypothesis are rewarding features, while not exceeding the instructed number

of relevant dimensions D). In “known” games, we assume that participants set their
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threshold according to this target reward probability, with a free-parameter offset δ:

θ = RPtarget(h|D,D(h)) + δ

The intuition is that the participant should expect a higher reward probability, for

example, when testing the same one-dimensional hypothesis in a 1D game (RPtarget =

0.8) compared to in a 3D game (RPtarget = 0.4). The average RPtarget of 1D, 2D and

3D games is used for “unknown” games.

Alternative choice policy: selecting more features than hypothesis

In the baseline model, participants’ choices are assumed to be aligned with their

current hypothesis, unless they have a lapse. In the experiment, however, we observed

an overall tendency to select more features than instructed (Figure 4.2B). This was not

surprising as there was no cost for selecting more features. In fact, it is strictly optimal

to always make selections on all dimensions, as there is always a best feature within

each dimension (at least equally good as the other two) according to the participant’s

mental model. Thus, we assume in this alternative model that participants may select

more features than their current hypothesis ht. The probability for choices that are

supersets of ht is determined by how similar it is to ht (number of dimensions that

differ), with a decay rate k as a free parameter:

P (ct|ht) ∝ ek(D(ct)−D(ht))

Participants may still lapse: all choices that are not supersets of ht are equally likely,

with probabilities sum to λ.
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4.5.2 Inference in the serial hypothesis testing models

The random-switch and value-based SHT models assume that participants serially

test hypotheses. As experimenters, however, we do not observe what hypotheses they

are testing. In order to predict their choice ct on trial t, we need to marginalize over

all possible hypotheses ht:

P (ct|D1:t−1) =
∑
ht

P (ct|ht)P (ht|D1:t−1)

The first term P (ct|ht) is given by the choice policy, as discussed before. In this

section, we describe how to calculate the second term, i.e., infer the hypothesis that

the participant is currently testing based on their choice and reward history (D1:t−1).

We do so using the change point detection model in [115].

We first introduce the run-length of hypothesis on trial t as lt, i.e., how long the

participant has been testing the current hypothesis. The probability of the current

hypothesis can then be written as the marginalization over run-length of the current

and last trials (on the first trial, all hypotheses are equally likely, corresponding to a

uniform prior on h1):

P (ht|D1:t−1) =
∑
lt,lt−1

P (ht|lt, lt−1, D1:t−1)P (lt, lt−1|D1:t−1)

=
∑
lt,lt−1

P (ht|lt, lt−1, D1:t−1)P (lt|lt−1, D1:t−1)P (lt−1|D1:t−1)

=
∑
lt,lt−1

∑
ht−1

(P (ht|lt, ht−1, lt−1, D1:t−1)P (ht−1|lt−1, D1:t−1))P (lt|lt−1, D1:t−1)P (lt−1|D1:t−1)

For the rest of this section, we describe how to calculate each term (color-coded)

receptively.
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The second term P (ht−1|lt−1, D1:t−1): recursive calculation

The second term can be calculated recursively using Bayes’ rule (normalization is

needed):

P (ht−1|lt−1, D1:t−1) ∝ P (ct−1|ht−1, lt−1, D1:t−2)P (ht−1|lt−1, D1:t−2)

On the second trial (special case with t = 2):

P (h1|l1, D1) ∝ P (c1|h1)P (h1|l1),

where P (h1|l1) is set to the prior belief distribution (uniform distribution).

Starting the third trial:

P (ht−1|lt−1, D1:t−1) ∝ P (ct−1|ht−1)P (ht−1|lt−1, D1:t−2)

= P (ct−1|ht−1)
∑
lt−2

P (ht−1|lt−1, lt−2, D1:t−2)P (lt−2|D1:t−2)

= P (ct−1|ht−1)
∑
lt−2

∑
ht−2

(P (ht−1|lt−1, ht−2, lt−2, D1:t−2)P (ht−2|lt−2, D1:t−2))P (lt−2|D1:t−2)

where P (ct−1|ht−1) is given by the choice policy.
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The fourth term P (lt−1|D1:t−1): recursive calculation

The fourth term is initialized as an array of a single element 1 on the second trial,

and can be calculated recursively using Baye’s rule starting the third trial:

P (lt−1|D1:t−1) ∝P (ct−1|lt−1, D1:t−2)P (lt−1|D1:t−2)

=
∑
ht−1

P (ct−1|ht−1, lt−1, D1:t−2)P (ht−1|lt−1, D1:t−2)
∑
lt−2

P (lt−1|lt−2, D1:t−2)P (lt−2|D1:t−2)

=
∑
ht−1

P (ct−1|ht−1)
∑
lt−2

P (ht−1|lt−1, lt−2, D1:t−2)P (lt−2|D1:t−2)
∑
lt−2

P (lt−1|lt−2, D1:t−2)P (lt−2|D1:t−2)

=
∑
ht−1

P (ct−1|ht−1)
∑
lt−2

∑
ht−2

(P (ht−1|lt−1, ht−2, lt−2, D1:t−2)P (ht−2|lt−2, D1:t−2))P (lt−2|D1:t−2)

∑
lt−2

P (lt−1|lt−2, D1:t−2)P (lt−2|D1:t−2)

The third term P (lt|lt−1, D1:t−1): hypothesis-testing policy

We calculate the third term P (lt|lt−1, D1:t−1) by marginalizing over the hypothesis

from last trial:

P (lt|lt−1, D1:t−1) =
∑
ht−1

P (lt|ht−1, lt−1, D1:t−1)P (ht−1|lt−1, D1:t−1)

The serial hypothesis testing assumption implies that lt can only take on two

possible values: lt−1 + 1 if the participant stay with the hypothesis from last trial,

and 0 if they switch hypothesis.

P (lt = lt−1 + 1|ht−1, lt−1, D1:t−1) = Pstay

P (lt = 0|ht−1, lt−1, D1:t−1) = 1− Pstay

Pstay is a function of ht−1, lt−1, D1:t−1, and is determined by the participant’s

hypothesis-testing policy (Equation 4.5).
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The first term P (ht|lt, ht−1, lt−1, D1:t−1): hypothesis-switch policy

The first term P (ht|lt, ht−1, lt−1, D1:t−1) is given by the switch policy. As noted before,

only certain combinations of lt and lt values are possible: either lt = lt−1 +1 (stay), or

lt = 0 (switch). Specifically, for lt = lt−1+1 (stay), P (ht = ht−1|ht−1, lt, lt−1, D1:t−1) =

1, otherwise, 0; for lt = 0 (switch), P (ht 6= ht−1|ht−1, lt, lt−1, D1:t−1) is determined as

in Equations 4.6 and 4.7. Other lt, lt−1 combinations all have probability zero.
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Chapter 5

Using recurrent neural networks to

study representation learning

The contents of this chapter were published in: Mingyu Song, Yael Niv, and Ming Bo

Cai. Using recurrent neural networks to understand human reward learning. In

Proceedings of the Annual Meeting of the Cognitive Science Society, volume 43, 2021.

All data and code are available at https://github.com/mingyus/RNN-cogsci2021.
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5.1 Introduction

Computational models of human cognition have greatly helped us in understanding

the way people learn and make decisions. For example, reinforcement learning (RL)

models reveal how people learn to acquire reward from trial-and-error experience;

Bayesian inference models demonstrate how people combine prior knowledge and

observations to form beliefs about the world. However, despite the great power of

these models and what they have taught us about human mind, much variance in the

data is often left unexplained even with the best-predicting cognitive models at hand.

For example, in the multi-dimensional probabilistic learning task studied in Chapter

4, an average likelihood of p = 0.22 per trial was achieved using the best cognitive

model. It is unclear whether this seemingly low model likelihood is purely due to the

stochastic nature of human behavior, or whether it indicates room for improvement

and potentially a better model. This is particularly relevant for complex sequential

learning tasks, where decisions depend not only on the current stimulus, but also the

history of experience; and is further complicated when there is a large number of

candidate choices (e.g., 64 different choices in the above experiment), making it hard

to precisely predict participants’ behavior.

Understandably, most cognitive modeling work focus on relative model compari-

son, which identifies the best-fit model out of a number of alternatives under consid-

eration. Studies do not, however, commonly evaluate the absolute goodness of fit of

models, or estimate how far they are from the best possible model. In theory, there

exists an upper bound for model log likelihood (i.e., the negative entropy of the data

[126]). However, estimating this bound is practically impossible in sequential tasks,

because the exact same experience is never repeated (it may be possible, however,

in simpler perceptual decision-making tasks where the same choice can be tested re-

peatedly [127]). In this work, we propose an alternative empirical approach: to use

recurrent neural networks (RNNs) to predict human choices.
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RNNs are neural networks with recurrent connections that can pass information

from one time point to the next. They are widely used to model temporal dynamics,

making them particularly suitable for capturing the sequential dependence of human

behavior. Compared to cognitive models that have carefully-crafted assumptions

based on knowledge about human cognition, RNNs are agnostic to cognitive processes.

They usually have thousands of free parameters (as compared to cognitive models

with around 10). The flexibility means that RNNs can potentially capture more

variance than do cognitive models, given a sufficient amount of training data (and

at the expense of a clearly understood process model of how the participant made

their decision). Despite the fact that RNNs have been widely used to solve cognitive

tasks [29, 128, 129], only a handful of works have used RNNs to directly model

the way people solve these tasks by predicting their behavior on a trial-by-trial basis

[130, 131, 132]. In these works, RNNs have been applied to bandit problems with very

sparse reward [130] or no clearly better options [132], and were able to predict either

counter-intuitive win-shift-lose-stay behavior, or stereotyped alternation of options,

both of which common cognitive models (e.g., reinforcement learning models) failed

on. In fact, due to the uninformativeness of reward signals in those specific tasks,

heuristics or stereotyped behavior were more likely, which may explain the success of

RNNs as compared to reinforcement learning models.

In the current work, we sought to apply this approach to more standard reward-

learning scenarios, in a task with a large enough choice space that will ensure sufficient

variance to be explained. We thus considered the probabilistic multi-dimensional re-

ward learning task studied in Chapter 4. In this task, participants tried to learn

about multi-dimensional rules through actively configuring three-dimensional stimuli

and receiving probabilistic feedback for their configuration. Prior work found that

participants’ learning strategy consisted of a combination of reinforcement learning

and hypothesis testing with rich individual differences. The best available cogni-
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Figure 5.1: Performance and choice behavior in the multi-dimensional re-
ward learning task. (A-C) The average reward, and (D-F) the number of features
selected per trial over the course of 1D, 2D and 3D games (left, middle and right
columns); red and blue curves represent the “known” and “unknown” conditions,
respectively. Shaded areas: 1 s.e.m. across participants. Dashed lines: chance level
for that type of game. (A,D): participants’ behavior; (B,E): simulation of the best
cognitive model; (A-D) are the same as Figure 4.2A,B and Figure 4.4B,C; (C,F):
simulation of the RNN model.
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tive model, the “value-based serial hypothesis testing model”, out-performed many

commonly-used cognitive models, and was able to account for individual differences

in belief space and choice policy. However, it still deviated from the data in some

important aspects. Specifically, it failed to precisely predict the number of features

participants selected on every trial (Figure 5.1E), as mentioned in Chapter 4.

We applied RNNs to fit participants’ behavior in this task, and found that RNNs

predicted choices better than the best cognitive model (average likelihood increased

by about 0.04 per trial, from the original p = 0.22), suggesting room for improvement

for cognitive models. We investigated the underlying reasons for RNNs’ superior

performance, and found at least two: RNNs were more accurate at capturing the de-

pendency between consecutive choices, and RNNs worked well with the large choice

space by identifying the subspace which participants used more accurately than the

best cognitive model. We further considered the rich individual difference observed

in this task, and incorporated it into the RNN by adding an embedding of individual

participants. Participant embedding helped model fits, especially for the first few tri-

als of each independent “game”. The embedding space encoded meaningful cognitive

variables whose variance across participants was not captured by an RNN without

embedding.

5.2 Apply RNNs to fit behavior

In this work, we used recurrent neural networks (RNNs) to fit behavior in the afore-

mentioned task (see Chapter 4 for task design, participants’ behavior and comparison

of cognitive models). The RNN model used here consists of an input layer, a recurrent

layer, and an output layer (Figure 5.2A). On each trial, the input variables consist of

a game-start indicator (1 if it is the first trial, 0 otherwise), the game type, the par-

ticipant’s choice (ct−1), the configured stimulus (st−1), and the outcome (rt−1), with
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Figure 5.2: RNN model structure. (A) The RNN model. (B) The RNN with
participant embedding model. Circled arrows indicate recurrent connections. Dashed
rectangulars indicate varying layer sizes (set by hyper-parameters).

the last three variables taken from the previous trial and are zero on the first trial of

a game. Each input variable is one-hot encoded, forming a concatenated binary input

vector. The recurrent layer is a long short-term memory (LSTM) layer, followed by

a linear feed-forward connection to the output layer, which is then transformed by a

Softmax function (with inverse temperature fixed at 1) to determine the probability

for choices on the current trial (ct). We used the cross-entropy loss, i.e., log likelihood

of participant’s choice, as the cost function. We optimized the network using the

Adam optimizer in PyTorch. Hyper-parameters of the models included learning rate,

batch size, and the size of the recurrent layer.

We split data into training, validation and test sets. The training set consisted

of 16 games from each participant (augmented 1296 times through shuffling the di-

mensions and features; see Discussion for details), and the validation and test sets

each consisted of 1 game per participant. The game type and game index were bal-

anced (to the extent possible) in each set to reduce potential bias or order effect. The

weights of the networks were trained on the training set, the hyper-parameter values
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were selected based on the validation set (the selected values were as follows: learning

rate of 0.001, batch size of 10000, recurrent layer size of 50, and early stopping at

epoch 28), and all results reported were evaluated on the test set using the best fit

network.

5.3 Compare RNN with the best cognitive model

The RNN performed better than the best cognitive model. The RNN was able to

quantitatively capture the number of features selected by participants throughout a

game, which the best cognitive model failed on (Figure 5.1F). The advantage of RNN

over the best cognitive model persisted through the course of a game (Figure 5.3A).

Because the same network was used to predict all participants, the RNN described

above could not be personalized for individual participants; this is in contrast to

cognitive models that fit a separate set of parameters for each participant. This can

explain the worse fit of the RNN compared to the best cognitive model on the first

trial of each game.

In the following, we try to identify the reasons for the RNN’s better performance,

and how they might help us understand what is lacking in the cognitive models. First,

we divided all trials into two types: trials where participants repeated the previous

choice (“stay trials”) and trials where they did not (“switch trials”); this analysis

ignored the first trial of each game, which did not fall into either category. The

advantage of the RNN over the cognitive model is primarily due to the switch trials

(Figure 5.3B). This result was not due to the RNN being biased towards predicting

switches. In fact, when examining how accurate the models are at predicting whether

a trial would be a stay or switch trial, the RNN assigned a higher probability for

both choice types than did the cognitive model (Figure 5.3C)1, suggesting that it was

1Note that (1) predicting “switch” means correctly identifying the “switch” choice type, but not
necessarily correctly predicting what the participant switched to; (2) stay trials were relatively easy
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Figure 5.3: Comparison between the RNN and the best cognitive model
reveals the advantage of RNN in predicting switch trials and the number
of features selected per trial. (A) Log likelihood difference between the RNN
and the best cognitive model, over the course of a game. Positive values indicate
better prediction by RNN. (B) Log likelihood differences between the models for
stay and switch trials respectively. (C) Probability that the models assigned for
staying or switching on “stay” or “switch” trials, respectively. For “switch” trials,
the probability was calculated as the sum of all possible switch choices. Blue bars:
best cognitive model; orange bars: RNN; same in (D,E). (D) Model prediction on
switch trials only, showing separately the probability that the model predicted for stay,
correct switch, and incorrect switch choices (further divided into “fewer”, “more” and
“same”, depending on the number of features selected in each choice, nselected, relative
to the true choice). (E) Mean absolute error in the number of features selected by the
two models, calculated by taking the expectation over all possible choices with respect
to the predicted probability of each choice. (F) Difference in log likelihood between
the RNN and best cognitive model as a function of their difference in absolute error
on nselected, for each participant. The better the prediction on the number of features
selected, the better the RNN did in fitting the participants’ overall behavior in the
test game. Shaded area (A) and error bars (B-E): 1 s.e.m. across participants.
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better at correctly identifying how the next trial depended on the previous one (stay

or switch).

We focused on switch trials to further investigate the RNN’s better performance

(Figure 5.3D). We categorized all possible choices into mistakenly predicting stay,

predicting the correct switch, or predicting a switch to an incorrect choice. In the

last case, we further categorized the choices based on whether they involved selecting

fewer, the same number of, or more features than did the participant. Consistent with

the results above, the RNN made fewer mistakes on switch versus stay (lower predicted

probability for stay, and higher for correct switch). When it did make a mistake, the

RNN was more likely to at least correctly predict the number of features selected.

This was confirmed by an overall lower absolute error on predicting the number of

features selected (Figure 5.3E). Finally, across participants, a lower absolute error in

predicting the number of features selected by the RNN as compared to the cognitive

model was correlated with a greater log likelihood advantage (i.e., a better fit) for

the RNN model (Figure 5.3F).

Taken together, these analyses showed that the RNN was better at correctly pre-

dicting the number of features selected. This is particularly useful when the choice

space is very large (as in this task), as it helps the RNN identify the correct subspace

of the true choice. This is, however, not the complete story: the RNN was more likely

to predict the true choice even within the correct subspace (predicted probability ra-

tio between the true choice and all switch choices with the correct nselected is 0.304

for RNN and 0.241 for the cognitive model), the reason behind which remains to be

investigated.

to predict for both models, thus their likelihood was much higher than switch trials; additional
improvement when the likelihood is high contributes less to the total log likelihood (cross-entropy
loss), explaining the small difference between the models in Figure 5.3B.
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Figure 5.4: RNN model comparison shows the effect of embedding. (A)
Model likelihood comparison between the best cognitive model, RNN and RNN with
participant embedding. (B) Log likelihood difference between RNN with and without
embedding, over the course of a game. Shaded area: 1 s.e.m. across participants.

5.4 Embedding captures individual differences

So far, we used the same RNN, referred to as the RNN model, to predict data

from all participants. This works well if all participants use the same strategy. By

fitting cognitive models to individual participants, however, we obtained different

parameter estimates, suggesting that there might be strategy differences across in-

dividuals. Thus, we considered the RNN with participant embedding model

(Figure 5.2B), by adding an embedding of individual participants to the input layer

of the original RNN. The embedding was trained end-to-end together with the rest of

the network. The size of the embedding layer was an additional hyper-parameter. As

with the other hyper-parameters, its value was selected based on model performance

on a validation set. The best-fit RNN with participant embedding model used the

following values: learning rate of 0.001, batch size of 10000, recurrent layer size of 50,

participant embedding size of 3, early stopping at epoch 23.

Adding the participant embedding improved the performance of the network (Fig-

ure 5.4A), most notably in the first two trials of each game (Figure 5.4B).

Despite the limited improvement in prediction, the embedding was crucial for

reproducing individual differences. To investigate what information is encoded in

107



RNN

RNN w/ 
embedding

RNN 
(real data in

first two trials)

Data

A B C

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Figure 5.5: Participant embedding encodes individual differences. Top row:
the first three principle components of the embedding layer are correlated with (A)
average number of features selected per trial; (B) average number of dimensions
changed on switch trials; (C) the proportion of switch trials. Bottom rows: his-
tograms of the corresponding variables in participants’ data and model simulations
of the RNN model, the RNN with participant embedding model, and the RNN model
that used participants’ data in first two trials of each game.

the embedding, we performed a PCA analysis on the embedding activity. The three

principal components (PCs) were correlated with the following cognitive variables of

individual participants, respectively (Figure 5.5 top row): (1) PC1: average number

of features selected per trial; (2) PC2: average number of dimensions changed on

switch trials; (3) PC3: the overall proportion of switch trials.

We tested how well the network models captured individual differences by com-

paring the histograms of these variables in data with those obtained from model simu-

lations. The RNN model failed to capture individual differences; in fact, it could only

predict the mean of these variables. In contrast, the RNN with participant embedding

108



model, was able to capture the distribution of all three variables, demonstrating the

usefulness of the embedding. Inspired by the finding that adding embedding improved

model fits primarily in the first two trials (Figure 5.4B), we further tested the RNN

model by providing it with participants’ data (choices and outcomes) for the first two

trials in the simulation. With such information, the RNN model without embedding

was able to capture the variance of some variables (e.g., number of features selected),

but still failed on others (e.g., proportion of switch trials). This suggests that the

embedding layer encodes information beyond what can be extracted from first two

trials of data.

Taken together, these results show the usefulness of an embedding layer in RNNs in

capturing the characteristics of individual participants. The embedding layer can then

be used to measure similarity between people and serve as the basis of finding sub-

groups in a population. In fact, similar work has been done by Dezfouli and colleagues

[131], where an RNN with embedding model was fit to two-armed bandit task data.

One of the two dimensions of the embedding space was found to differentiate between

healthy, depressed and bipolar populations.

Moreover, it is worth noting that the embedding activity was found to encode

cognitively-meaningful information in the current task. This is promising if gener-

alizable to other tasks. Neural networks are notoriously hard to interpret despite

being powerful prediction tools. The participant embedding, however, helps to make

RNNs more interpretable, and can be useful in identifying important task variables

that determine participants’ strategies. Related, if the embedding vector is found to

be correlated with certain cognitive functions (e.g., working memory capacity), the

measurement of such cognitive functions can then be used to predict a participant’s

behavior on the task, and vice versa.
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5.5 Discussion

We showed that RNN models fit human behavior better than cognitive models in a

complex reward-learning task. The best cognitive model previously developed for

this task used a hybrid strategy that combines reinforcement learning and serial

hypothesis-testing, and considered individual differences in how participants under-

stand instructions, their hypothesis-testing policy, and choice policy. However, such

a sophisticated cognitive model still failed to fully explain participants’ choices. RNN

models, in contrast, made no assumption about cognitive processes, but were able to

generate more precise predictions both at the group level and for individual partici-

pants. Analyses of model predictions revealed that the advantage of RNNs persisted

throughout the course of learning. In particular, RNNs were better at predicting

“stay” versus “switch” trials, i.e., how the current choice related to the previous one,

as well as predicting what subset of the large choice space was used by participants

(i.e., the number of features selected). As a next step, we can utilize the insights

gained from RNNs to improve cognitive models, in order to achieve a better account

of human behavior in this task.

We hope to demonstrate with this work the general value in training RNNs to

predict human behavior in complex cognitive tasks. This approach has so far been

under-utilized, with only a handful of applications [131, 130, 132]. This is potentially

due to the large amount of data required for training neural network models. In the

current work, we were able to augment the training set by utilizing the symmetric

task structure. Assuming that participants’ strategies did not depend on specific

dimensions or features, we generated auxiliary data by shuffling the dimensions and

features in each game (for both choices and stimuli), which effectively increased the

training data size by about 10 times (although still less than the ideal size, and we ran

the risk of under-fitting; Figure 5.6). Such data augmentation may not be possible for

every task; a more general solution for using limited amount of data more efficiently
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Figure 5.6: Dependency of RNN performance on training data size, and
effect of data augmentation. We simulated “data” of varying sizes (1 to 1296
times of the original dataset) with the best cognitive model using best-fit parame-
ters, and used the RNN model to fit these datasets. Red dashed line: ground-truth
likelihood of the generative model; blue dots: likelihood of the RNN model. RNN
performance improved with data size, asymptotically approaching the ground truth.
We augmented the simulated data of size 1 by 6, 216, and 1296 times through shuf-
fling dimensions (shuffleD), features (shuffleF) or both (shuffleDF; as we did for the
human data), and fit the RNN model to the augmented datasets; results shown in
black asterisk. Data augmentation helped increase the effective data size, but only
by roughly 10 times.

may be to use cognitive models as priors for neural network models [133]. As big

data becomes more and more common in cognitive science [134], the RNN approach

would become more powerful. In fact, large-scale experiments, combined with the use

of artificial neural networks, have already shown merits in developing interpretable

models of human economic and moral decision-making [135, 136].

The RNN approach has been successfully applied in scenarios where the available

cognitive models (most often RL models) are not good candidates for explaining

observed behavior that is largely heuristic or stereotyped [131, 132]. The current

work, in contrast, showcases another use case for this approach: complex cognitive

tasks with rich individual variability. In tasks such as the current one, where the best

available cognitive model cannot fully capture the richness in behavior, RNNs can be

useful in (1) finding the empirical upper bound for goodness of fit; (2) revealing what

is missing in the cognitive models; (3) capturing the richness of individual behavioral
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differences. In this work, we achieved these goals by conducting model comparison,

analyzing the winning RNN models, and developing RNN models with participant

embedding. Future work can seek to apply RNNs in other similarly complex cognitive

tasks to improve our understanding of human cognition and its variability.
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Chapter 6

Conclusion
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6.1 Contributions

I began this dissertation by demonstrating the importance of studying representation

learning. In Chapter 2, I showed through model comparison that rats do not form

the optimal state representation in a seemingly simple choice task. I argued that such

a deviation of animals’ representation from how the task was designed suggests the

need to carefully examine the actual representation held by animals and humans in

decision tasks, as well as its learning process. To my knowledge, this is the first study

to formally test different task representations underlying animal behavior in a simple

trial-and-error learning choice task – the type of task that is often thought of as the

“bread and butter” reinforcement learning task where representations are trivial. My

results underscore the importance of testing our assumptions—about representations,

not just about the learning processes that act on those representations—rather than

assuming that our experimenter-centric understanding of a decision task is shared by

our experimental subjects.

To study the cognitive mechanisms underlying representation learning, I then

examined two types of learning problems: grouping individual experience into states,

and identifying relevant information for a task among distractor features.

In Chapter 3, I developed a computational model that explains how animals infer

latent states in fear extinction experiments. Specifically, I provided a quantitative

explanation on why a gradual extinction procedure is more effective than the stan-

dard procedure (or a reverse procedure) in preventing the return-of-fear in the long

term. These data had not been previously explained by a computational model. Al-

though the gradual extinction procedure was originally inspired by the latent-cause

framework, which had conceptually predicted its long-lasting extinction effect, that

framework on its own was unable to explain the differences between gradual extinction

(which led to long-lasting extinction, as predicted) and the gradual reverse control

condition (which resulted in spontaneous recovery and reinstatement of fear). My
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modeling work investigated where the latent-cause framework came short, and sug-

gested adjustments to the model that would bring it in line with empirical results.

These additional assumptions enrich the original framework, and make predictions

for other learning scenarios as well.

In Chapter 4, I examined how humans learn to identify relevant factors in complex

environments with redundant information. This is a common problem in real-world

scenarios that has only received attention in recent years. However, previous exper-

iments only looked at scenarios where participants can choose among a small set of

options that are made available to them. In the real world, we can often craft our

own learning experiences, deciding what options to test, and what configurations of

features to combine. To test this type of learning, I designed a novel active-learning

task where human participants created multidimensional stimuli and received proba-

bilistic feedback for their creations. I systematically examined participants’ learning

strategy and how it depends on task complexity. I showed that participants com-

bine rule-based and value-based strategies in learning, and trade them off based on

their costs and benefits under various task complexities. This work expands our

understanding of how people learn to identify relevant information to more realis-

tic active-learning settings. In such rich and complex environments, I showed that

human learning can be characterized as a hypothesis-testing process based on value

learning. My work therefore helps to unify the various findings on rule-based and

value-based strategies in representation learning literature, and opens up the oppor-

tunity to further examine the integration of the two learning mechanisms in behavior

and in the brain.

Finally, in Chapter 5, I proposed a novel computational approach for studying

representation learning with recurrent neural networks (RNNs). By applying RNNs

to the rule-learning task in Chapter 4, I showcased the utilities of RNNs in (a) setting

targets for developing cognitive models, (b) providing insights on how to improve
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cognitive models, and (c) studying individual cognitive variability. There is a growing

interest in deep neural networks in representation learning research. Specifically,

RNNs have been broadly used to model how the brain solves cognitive tasks. However,

very few studies have investigated a different way of using RNNs, as flexible function

approximators, to predict behavior. My work demonstrated the avenues for such

use of these networks, and how they can interface with more traditional cognitive

modeling research.

6.2 General Discussion

Representation learning is a key component of animal and human learning in realis-

tic, complex environments. It comes hand-in-hand with reward learning (i.e., learning

the association between stimuli/actions and outcomes): on the one hand, represen-

tation learning provides the foundation for reward learning by forming the critical

state representation; on the other hand, representation learning rarely happens with-

out feedback, and relies on reward (or punishment) as learning signals. Despite the

important role of representation learning, there is little consensus on its cognitive or

neural mechanisms, in contrast to a unified theory of reward learning once a state

representation is assumed [6] (driven by error signals and supported by the midbrain

dopaminergic system [4, 5]).

In this dissertation, I studied the computational mechanisms that underlie repre-

sentation learning, and tried to uncover common cognitive principles across various

learning scenarios. In Chapter 3, I studied how animals group individual experiences

into hidden states in fear extinction experiments. During fear extinction, my models

suggested that animals perform probabilistic inference on the underlying states based

on sequences of experience. Such inference relies on animals’ prior belief on how new

states were generated, and my work suggested that animals use an approximation
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of the posterior belief that involves occasional collapse of full posterior belief distri-

butions to their mode. In Chapter 4, I studied how humans learn about complex

rules that define states. In a multi-dimensional probabilistic reward-learning task, I

showed that participants use a combination of value-learning and rule-learning strate-

gies, biasing towards one or the other based on the instructed task complexity. The

rule-based strategy is a simpler alternative to optimal Bayesian inference that reduces

computation and memory load.

Despite the apparent differences between the two learning tasks, they together re-

veal general principles of representation learning (in addition to the common reward

learning component that learns the “value” of the hidden states or candidate rules

through trial-and-error): During representation learning, agents often need to con-

sider multiple possibilities (e.g., how experience should be grouped into clusters that

may change over time, or how different factors may together determine outcomes), and

figure out which one is the most likely based on observations. The normative way to

differentiate between alternatives and identify the correct task structure is through

probabilistic inference, i.e., optimally integrating information from experience and

combining it with prior knowledge. However, optimal inference can be intractable

with numerous possibilities. As shown in the above two studies, animals and hu-

mans instead use approximate inference to simplify computation and reduce memory

load, either by collapsing posterior belief distributions, or by reducing the size of the

hypothesis space. In addition, they form useful inductive biases (or priors) to help

with the inference process, either by using a time-dependent prior that reflects the

dynamics of a changing environment, or by trading off two learning strategies based

on the instructed task complexity. Together, studies in this dissertation suggested

that approximate inference and inductive biases serve as two general principles that

underlie animal and human representation learning.
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Similar principles have previously been proposed in related tasks. For example,

when solving categorization tasks [137, 138] or learning about causal relationships

[121], humans have been shown to use approximate inference approaches (e.g., im-

portance sampling, Markov Chain Monte Carlo sampling); they also tend to favor

simpler rules over more complex ones a priori [120, 139], showing an inductive bias

that represents the dominance of simple relationships in nature. It is still largely

unknown how these principles may be implemented in the brain (but see [140, 141]),

and further, whether various learning scenarios are supported by a common neural

mechanism. As a first step towards a theory of representation learning, future work

can test these principles and their specific implementations in different scenarios, and

study their neural implementations.

Related, these cognitive principles may be useful for developing artificial intel-

ligence that is more sample-efficient and generalizes better across tasks. Domain

knowledge or inductive biases have already been shown to help neural networks learn

faster with fewer samples in tasks like reasoning about intuitive physics or mimicking

to generate hand-written characters [142]. It can be promising to incorporate these

cognitively-inspired principles into representation-learning tasks as well.

In this dissertation, I also demonstrated the usefulness of two general computa-

tional approaches in studying the cognitive mechanisms for representation learning.

First, to understand learned task representations, I showed that it is useful to compare

alternative models with different state representations. For example, in Chapter 2,

I demonstrated this approach with an odor-guided decision task in rats, and showed

that animals formed a task representation that prohibited efficient generalization be-

tween trial types. Further, to characterize the learning process, I showed the utility of

generic recurrent neural networks (RNNs). In Chapter 5, I used the aforementioned

multi-dimensional probabilistic reward learning task as an example, and demonstrated
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the usefulness of RNNs in both setting a target for developing cognitive models and

providing insights on the underlying cognitive mechanisms and individual variability.

In sum, this dissertation contributes to advancing our understanding of represen-

tation learning both mechanistically and methodologically. Through the study of a

few learning scenarios, this dissertation reveals general principles underlying the pro-

cess animals and humans learn about task structures, i.e., how they use approximate

inference and inductive biases to help with reasoning over numerous possibilities. Fu-

ture work can test these principles in a wider range of tasks, and further investigate

their potential neural underpinnings. Additionally, this dissertation demonstrates

ways to study representation learning with formal model comparison and a novel

neural network approach, both of which can be widely applied to a myriad of tasks.
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