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Abstract

Learning the rules for reward is a ubiquitous and crucial task in daily life, where
stochastic reward outcomes can depend on an unknown number of task dimensions.
We designed a paradigm tailored to study such complex learning scenarios. In the
experiment, participants configured three-dimensional stimuli by selecting features
for each dimension and received probabilistic feedback, without being informed
of the underlying rules. Through learning, participants were able to select more
rewarding features over time. To investigate the learning process, we tested two
learning strategies, feature-based reinforcement learning and serial hypothesis
testing, and found evidence for both. The extent to which each strategy was
engaged depended on the instructed task complexity: when instructed that there
were fewer relevant dimensions (and therefore simpler and fewer possible rules)
people tended to serially test hypotheses, whereas they relied more on learning
feature values when more dimensions were relevant, demonstrating a strategic use
of task information to balance the cost-and-benefit of the two learning systems.

1 Introduction

When interacting with a complex environment, it is crucial to figure out the underlying rules for
obtaining rewards. Learning such rules, however, can be quite challenging, with numerous potentially
relevant dimensions and uncertain outcomes. For example, when learning to bake breads, a collection
of decisions needs to be made including the amount of yeast to use, the flour to water ratio, the
proof time, the baking temperature, etc. An inexperienced baker can be clueless when facing these
decisions, especially when the results are variable even following the same recipe. But after a few
attempts on different combinations, they will hopefully figure out the rule for bread-making.

Few studies have investigate how humans learn about rules under the challenges of both multiple
relevant dimensions and stochastic feedback (but see [1, 2]). In most multidimensional reinforcement
learning (RL) tasks [3, 4, 5], only one dimension of a stimulus is relevant for reward, and participants
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are explicitly informed so; in category learning tasks, rules often involve multiple dimensions, but
they are often deterministic by design [6, 7]. Therefore, we developed a task aimed at studying
probabilistic reward learning about multiple (or even an unknown number of) relevant dimensions.

2 The “build-your-own-stimulus" task

In this task, stimuli are characterized by features in three dimensions: color ({red, green, blue}),
shape ({square, circle, triangle}) and texture ({plaid, dots, waves}). In each game, a subset of the
three dimensions was relevant for reward, meaning that one feature (compared to the other two) in
each of these dimensions made stimuli more rewarding.

To earn rewards and figure out the most rewarding features (abbreviated as “rewarding features"
from here on) in the relevant dimensions, participants were asked to configure stimuli by selecting
features for each dimension (Figure 1). They could also leave any dimension empty, in which case the
computer would randomly select a feature in that dimension. The participant then saw the resulting
stimulus and received probabilistic reward feedback (one or zero points) based on the number of
rewarding features in the stimulus (Table 1). Participants’ goal was to earn as many points as possible
over the course of each game.

Table 1: Probability of reward for each game type, as a function of number of rewarding features in
the stimulus

Game type # rewarding features
0 1 2 3

1D-relevant 20 % 80% – –
2D-relevant 20 % 50% 80% –
3D-relevant 20 % 40% 60% 80%

Each game had 1-3 relevant dimensions (corresponding to 1D, 2D and 3D-relevant conditions), and
this number was either known or unknown to participants (“known" and “unknown" conditions),
resulting in six game types in total.

Compared to the multidimensional RL tasks and categorization tasks in the literature where stimuli (i.e.
the combination of features) are often pre-determined and where it is hard to isolate the participants’
preference over single features, this task design enables us to directly probe participants’ preference
(or lack thereof) in each of the three dimensions.

2.1 Participants.

102 participants recruited through Amazon Mechanical Turk each played all six types of games
(3 games of each type, 30 trials per game). Participants were told that there could be one, two or
three dimensions that were important for reward, and were explicitly informed about the reward
probabilities in Table 1. In “known" games, the number of relevant dimensions was instructed before
the start of the game. Participants were never told which dimensions were relevant or which features
were more rewarding.

2.2 Learning performance and choice behavior.

Across all six game types, participants’ performance improved over the course of a game (Figure 2A).
Games were harder (i.e. participants were less able to learn all the rewarding features) as the number
of relevant dimensions increased; knowing the number helped performance when three dimensions
were relevant (repeated measures ANOVA: F (1, 101) = 11.3, p = .001), but not for one or two
relevant dimensions (1D: F (1, 101) = 3.28, p = .073; 2D: F (1, 101) = 0.0007, p = .98).

Participants also showed distinct choice behavior in the different game types (Figure 2B): in “known”
(number of relevant dimensions) games, they systematically selected more features on each trial
as more dimensions were relevant; in “unknown” games, the number of selected features was not
different between game types.

In sum, participants learned the task and performed better than chance, and their performance and
choice behavior depended on game conditions.

2



or
0 point

Done

Done

You won 
1 point!

RT < 5s

Stimulus0.5s
Feedback & ITI

2.5s
Done

Figure 1: The build-your-own-stimulus task. Participants built stimuli by selecting a feature in
each of 0-3 dimensions (marked by black squares). After hitting “Done", the stimulus showed up on
the screen, with features randomly determined for any dimension without a selection (here, circle
was randomly determined). Reward feedback was then shown.
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Figure 2: Performance and choices by game type. (A) The number of rewarding features in the
configured stimulus, and (B) The number of features selected by the participants, over the course of
1D, 2D and 3D-relevant games (left, middle and right columns); red and blue curves represent the
“known" and “unknown" conditions, respectively. Shaded areas represent 1 s.e.m. across participants.
Dashed lines represent chance level for that type of game.

3 A hybrid of two learning systems

There is extensive evidence supporting the existence of two learning systems in representation
learning [8, 9]: an incremental learning system that learns the value of stimuli based on feedback
from trial-and-error experiences, and a rule-based learning system that explicitly represents possible
rules and evaluates them. Both learning strategies have been observed in tasks similar to the current
one. For instance, in probabilistic reward learning tasks, people seem to learn via trial-and-error to
identify relevant dimensions, and gradually focus their attention onto the rewarding features in those
dimensions [3, 4, 5]. In contrast, in some types of categorization tasks, people seem to evaluate the
probability of all possible rules via Bayesian inference, with a prior belief favoring simpler rules [6].
Inspired by these prior works, we test and compare both learning strategies.
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3.1 Reinforcement learning model

First, we consider a feature-based reinforcement learning (RL) model, similar to the feature RL
with decay model in [3]. It learns the values of nine features using Rescorla-Wagner updating, with
separate learning rates for features that were selected by the participant (η = ηs) and those that were
randomly determined (η = ηr). Values for the features not in the current stimulus st are decayed
towards zero with a factor d ∈ [0, 1]. ηs, ηr and d are free parameters.

Vt(fi,j) =

{
Vt−1(fi,j) + η(rt − ER(ct)), if j = sit
d · Vt−1(fi,j), if j 6= sit

(1)

where i and j index dimensions and features, respectively.

At decision time, the expected reward (ER) for each choice c is calculated as the sum of its feature
values:

ER(c) =
∑
i

V (fi,ci), (2)

with the average value of all three features used for dimensions with no selected features.

The choice probability is then determined based on ER(c) using a softmax function, with β as a free
parameter:

P (c) =
eβ·ER(c)∑
c′ e

β·ER(c′)
. (3)

3.2 Rule learning models

Unlike the value-based strategy that learns values for each feature independently and combines them
additively at choice time, the rule-based strategy directly evaluates combinations of features. We
considered each specification of the relevant dimension(s) and the corresponding rewarding feature(s)
as a “rule”. For “unknown" games, there were 63 possible rules in total; for “known" games, the total
reduced to 9, 27 and 27 for 1D, 2D and 3D-relevant conditions, respectively.

There is little consensus on how people learn which rule is correct. One possibility is to consider all
candidate rules, and use Bayes’ rule to evaluate how likely each of them is; we term this a “Bayesian
rule learning model”. This model optimally utilizes feedback information to learn about candidate
rules, and can serve as a reference model. However, Bayesian inference is computationally expensive
and has a high memory load. A simpler alternative is serial hypothesis testing, with the assumption
that people only test one rule at a time: if the evidence supports their hypothesis, they continue with
that rule; otherwise, they switch to a different one, until the correct rule is found.

Bayesian rule learning model maintains a probabilistic belief distribution over all possible rules
(denoted by h for hypotheses). After each trial, the belief distribution is updated according to Bayes’
rule:

P (h|c1:t, r1:t) ∝ P (rt|h, ct)P (h|c1:t−1, r1:t−1). (4)

At decision time, the expected reward for each choice is calculated using the entire belief distribution:

ER(c) =
∑
h

P (h)P (r|h, c). (5)

The expected reward is then used to determine the choice probability as in Equation 3.

Serial hypothesis testing (SHT) models assume the participant tests one hypothesis at any given
time. We do not directly observe what hypothesis the participant is testing, and must infer that from
their choices. We do so by using the change point detection model in [10]. The detailed math of this
approach is beyond the page limit, but the basic idea is to infer the current hypothesis using all the
choices the participant made so far (in the current game) and their reward outcomes (together denoted
by D1:t−1). Different variants of the model differ in the assumptions they make about the hypothesis
testing and switching policies (i.e., whether to switch hypotheses and which next hypothesis to switch
to, respectively; these two policies together determine the transition from the hypothesis on the last
trial to the current one), and the choice policy (the probability of choice given the current hypothesis).
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Given this generative model of choices, we use Bayes’ rule to calculate the posterior probability
distribution over the current hypothesis ht: P (ht|D1:t−1), and use this to predict the choice:

P (ct|D1:t−1) =
∑
ht

P (ct|ht)P (ht|D1:t−1) (6)

Various choices can be made regarding the three policies, and the hypothesis space. As a baseline,
we allow all Nh = 63 hypotheses in the hypothesis space, and consider the following hypothesis
testing policy: On each trial, the participant estimates the reward probability of the hypothesis on
last trial. With a uniform Dirichlet prior, this is equivalent to counting how many times they have
been rewarded since they started testing this hypothesis. The estimated reward probability is then
compared to a soft threshold θ to determine whether to stay with this hypothesis or to switch to a
different one:

Pr(stay) =
1

1 + e−βstay(P̂reward−θ)
, (7)

where P̂reward = reward count +1
trial count+2 is the estimated probability of reward for hypothesis ht−1, and βstay

and θ are free parameters. If the participant decides to switch, the model assumes that they will
randomly switch to any other hypothesis:

P (ht) =

{
Pr(stay), if ht = ht−1

1
Nh−1 (1− Pr(stay)) , if ht 6= ht−1

(8)

Participants’ choices are assumed to be aligned with their hypotheses most of the time, with a
free-parameter lapse rate of λ.

We call this model the random-switch SHT model.

3.3 Hybridizing the two learning systems

So far we have considered the two learning systems separately. However, they are not necessarily
exclusive. We thus consider a hybrid model by incorporating the feature values into the switch
policy of the serial hypothesis testing model. Rather than choosing a new hypothesis randomly, this
model favors hypotheses that contain recently rewarded features. It maintains a set of feature values
updated according to feature RL with decay as in Equation 1 (but with a single learning rate), and
calculates the expected reward for each alternative hypothesis by adding up its feature values, similar
to Equation 2 but for h instead of c. The probability of switching to ht 6= ht−1 is:

P (ht) = (1− Pr(stay))
eβswitch·ER(ht)∑

h′ 6=ht−1
eβswitch·ER(h′)

, (9)

where βswitch is a free parameter. We call this model the value-based SHT model.

3.4 Model fitting and model comparison

We fit the models using maximum likelihood estimation with the minimize function (L-BFGS-
B algorithm) in Python package scipy.optimize with 10 random starting points. We performed
leave-one-game-out cross-validation. Model fits were evaluated with cross-validated trial-by-trial
likelihood.

Model comparison results are shown in Figure 3A. Among the four models, the Bayesian rule
learning model, even though optimal in utilizing the feedback information, showed the worst fit to
participants’ choices. This is potentially due to the large hypothesis space (up to 63 hypotheses),
making it implausible that participants performed exact Bayesian inference. Both the feature RL with
decay model and the random-switch SHT model showed much better fit. Compared to the Bayesian
model, both have lower memory and computational loads: the RL model takes advantage of the
fact that different dimensions are independent and the reward probabilities are additive, by learning
nine feature values individually and later combining them; the random-switch SHT model limits the
consideration of hypotheses to one at a time. The hybrid value-based SHT model, combining both
learning systems, fit best, suggesting that participants used both strategies when solving this task.
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Figure 3: Model comparison supports both learning strategies. (A) Geometric average likelihood
per trial for each model. Higher values indicate better model fits. Dashed lines indicate the chance
level. (B, C) The difference in likelihood per trial between the hybrid value-based SHT model and
(B) the feature RL with decay model (i.e. the contribution of serial hypothesis testing in the hybrid
model), or (C) the random-switch SHT model (i.e. the contribution of feature value learning), by
game type. Error bars represent 1 s.e.m. across participants.

Knowing that both learning systems were used in this task, the next question is how much each of
them contributed. We address this question by comparing the hybrid model with the two component
models, for each game condition separately: the additional likelihood per trial for the hybrid model
as compared to each component is a proxy for the contribution of the other mechanism (Figure 3B
and 3C). Our results show that participants’ strategies were sensitive to task conditions. In “known"
games, the contribution of hypothesis testing decreased with more relevant dimensions (estimated
fixed effect slope −0.0631± 0.0051 in a mixed linear model with a random intercept, p < .001), and
the contribution of value learning increased instead (estimated slope: 0.0178± 0.0013, p < .001).
The different use of the two strategies can be explained by the their efficiency (considering both cost
and benefit) under different task complexities. In lower-dimensional games, the candidate rules are
simpler and thus less working-memory demanding to rehearse; the hypothesis space is also smaller,
making it less inefficient to test one hypothesis at a time. Thus, it is more beneficial to use serial
hypothesis testing strategy in these games, and this was indeed what the participants did. On the
contrary, in higher-dimensional games with more complex rules and larger hypothesis spaces, serial
hypothesis testing is less efficient and more costly on mental effort. As a result, it is more beneficial to
learn all feature values in parallel, and participants indeed relied more on the value-learning strategy
in these games. Taken together, these results suggested that participants took advantage of the task
information and stroke a strategic balanced between the two learning systems. This was in contrast
to “unknown" games when such task information was unavailable to participants: the contribution
of both mechanisms differed less across game conditions (estimated slopes: −0.0144± 0.0042 for
SHT, p < .001; −0.0011± 0.0012 for RL, p = .389).

4 Discussions

Our work shed light on the way humans learn about rules in complex and stochastic environments
to help make better decisions. With limited cognitive resources, their strategies deviated from the
optimal Bayesian model, yet performance was close to optimal (average reward across all games
is 90.8% compared to the optimal solution). This was achieved by leveraging the existence of two
learning systems: The serial hypothesis testing system focuses on learning only one possibility

6



at a time and reduces noise (locally) faster as a result. The reinforcement learning system learns
universally about all features; therefore it takes longer but is more accurate and informative in
the long run. The hybrid model (value-based SHT model) incorporates the advantages of both
systems by testing single hypothesis within short time intervals and relying on feature values learned
incrementally in longer time scales. This model was shown to fit best to participants’ behavior. In
addition, we showed that human participants were able to gauge which system was more suitable to
use under different task conditions and demonstrated a strategic balance between them.
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