Using Recurrent Neural Networks to Understand Human Reward Learning
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Motivation Apply RNN to fit behavior RNN embedding captures individual difference
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Cognitive modeling The best cognitive model
reveals learning strategy and individual differences + Combines value-based (reinforcement learning) and rule-based * Principle components of embedding activity correlate
_ _ _ (hypothesis testing) strategies with cognitive variables of individual participants.
but fails to account for all behavioral variance » Captures individual differences on hypothesis and choice policy « Embedding layer necessary for individual difference.
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Use RNNs to predict human behavior in complex cognitive
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