Using Recurrent Neural Networks to Understand Human Reward Learning

Mingyu Song (mingyus @princeton.edu), Yael Niv (yael @ princeton.edu)
Princeton Neuroscience Institute, Princeton University
Princeton, NJ 08540, United States

Ming Bo Cai (mingbo.cai@ircn.jp)
International Research Center for Neurointelligence, (WPI-IRCN), UTIAS, The University of Tokyo
Bunkyo City, Tokyo 113-0033, Japan

Abstract

Computational models are greatly useful in cognitive science
in revealing the mechanisms of learning and decision making.
However, it is hard to know whether all meaningful variance
in behavior has been account for by the best-fit model selected
through model comparison. In this work, we propose to use
recurrent neural networks (RNNs) to assess the limits of pre-
dictability afforded by a model of behavior, and reveal what (if
anything) is missing in the cognitive models. We apply this ap-
proach in a complex reward-learning task with a large choice
space and rich individual variability. The RNN models outper-
form the best known cognitive model through the entire learn-
ing phase. By analyzing and comparing model predictions, we
show that the RNN models are more accurate at capturing the
temporal dependency between subsequent choices, and better
at identifying the subspace in the space of choices where par-
ticipants’ behavior is more likely to reside. The RNNs can
also capture individual differences across participants by uti-
lizing an embedding. The usefulness of this approach suggests
promising applications of using RNNs to predict human be-
havior in complex cognitive tasks, in order to reveal cognitive
mechanisms and their variability.

Keywords: recurrent neural network; model comparison;
probabilistic reward learning; sequential decision making

Introduction

Computational models of human cognition have greatly
helped us in understanding the way people learn and make
decisions. For example, reinforcement learning (RL) models
reveal how people learn to acquire reward from trial-and-error
experience; Bayesian inference models demonstrate how peo-
ple combine prior knowledge and observations to form be-
liefs about the world. However, despite the great power of
these models and what they have taught us about human
mind, much variance in the data is often left unexplained
even with the best-predicting cognitive models at hand. For
example, in a multi-dimensional probabilistic learning task
(Song et al., 2020), an average likelihood of p = 0.22 per
trial was achieved using the best cognitive model. It is unclear
whether this seemingly low model likelihood is purely due to
the stochastic nature of human behavior, or whether it indi-
cates room for improvement and potentially a better model.
This is particularly relevant for complex sequential learning
tasks, where decisions depend not only on the current stim-
ulus, but also the history of experience; and is further com-
plicated when there is a large number of candidate choices
(e.g. 64 different choices in the above study), making it hard
to precisely predict participants’ behavior.

Understandably, most cognitive modeling work focus on
relative model comparison, which identifies the best-fit model
out of a number of alternatives under consideration. Studies
do not, however, commonly evaluate the absolute goodness
of fit of models, or estimate how far they are from the best
possible model. In theory, there exists an upper bound for
model log likelihood (i.e., the negative entropy of the data
(Cover, 1999)). However, estimating this bound is practically
impossible in sequential tasks, because the exact same expe-
rience is never repeated (it may be possible, however, in sim-
pler perceptual decision-making tasks where the same choice
can be tested repeatedly (Shen & Ma, 2016)). In this work,
we propose an alternative empirical approach: to use recur-
rent neural networks (RNNs) to predict human choices.

RNNss are neural networks with recurrent connections that
can pass information from one time point to the next. They
are widely used to model temporal dynamics, making them
particularly suitable for capturing the sequential dependence
of human behavior. Compared to cognitive models that have
carefully-crafted assumptions based on knowledge about hu-
man cognition, RNNs are agnostic to cognitive processes.
They usually have thousands of free parameters (as com-
pared to cognitive models with around 10). The flexibil-
ity means that RNNs can potentially capture more variance
than do cognitive models, given a sufficient amount of train-
ing data (and at the expense of a clearly understood process
model of how the participant made their decision). Despite
the fact that RNNs have been widely used to solve cognitive
tasks (Yang et al., 2019; Wang et al., 2018; Lu et al., 2020),
only a handful of works have used RNNs to directly model
the way people solve these tasks by predicting their behav-
ior on a trial-by-trial basis (Dezfouli, Griffiths, et al., 2019;
Dezfouli, Ashtiani, et al., 2019; Fintz et al., 2021). In these
works, RNNs have been applied to bandit problems with very
sparse reward (Dezfouli, Griffiths, et al., 2019) or no clearly
better options (Fintz et al., 2021), and were able to predict ei-
ther counter-intuitive win-shift-lose-stay behavior, or stereo-
typed alternation of options, both of which common cognitive
models (e.g., reinforcement learning models) failed on. In
fact, due to the uninformativeness of reward signals in those
specific tasks, heuristics or stereotyped behavior were more
likely, which may explain the success of RNNs as compared
to reinforcement learning models.

In the current work, we sought to apply this approach to

more standard reward-learning scenarios, in a task with a
large enough choice space that will ensure sufficient variance
to be explained. We thus considered the probabilistic multi-
dimensional reward learning task mentioned in the beginning
(Song et al., 2020). In this task, participants tried to learn
about multi-dimensional rules through actively configuring
three-dimensional stimuli (color, shape and pattern) and re-
ceiving probabilistic feedback for their configuration. Prior
work found that participants’ learning strategy consisted of
a combination of reinforcement learning and hypothesis test-
ing with rich individual differences. The best available cogni-
tive model, the “value-based serial hypothesis testing model”,
out-performed many commonly-used cognitive models, and
was able to account for individual differences in belief space
and choice policy. However, it still deviated from the data in
some important aspects, as we detail below.

We applied RNNs to fit participants’ behavior in this task,
and found that RNNs predicted choices better than the best
cognitive model (average likelihood increased by about 0.04
per trial, from the original p = 0.22), suggesting room for
improvement for cognitive models. We investigated the un-
derlying reasons for RNNs’ superior performance, and found
at least two: RNNs were more accurate at capturing the de-
pendency between consecutive choices, and RNNs worked
well with the large choice space by identifying the subspace
which participants used more accurately than the best cogni-
tive model. We further considered the rich individual differ-
ence observed in this task, and incorporated it into the RNN
by adding an embedding of individual participants. Partici-
pant embedding helped model fits, especially for the first few
trials of each independent “game”. The embedding space en-
coded meaningful cognitive variables whose variance across
participants was not captured by an RNN without embedding.

Reward learning task and cognitive models

In this section, we briefly introduce the reward learning task
and how participants performed in this task. We summarize
participants’ performance and choice behavior, as well as the
results of previous computational cognitive models. For de-
tails on the task and modeling, please see (Song et al., 2020).

In the “build-your-own-stimulus” reward-learning task
(Figure 1), participants were asked to configure stimuli by
choosing their color, shape and/or pattern (each from three
options), and received probabilistic binary reward feedback.
On each trial, they would select what feature to use for each of
the three dimensions, or leave any dimension blank to let the
computer randomly decide for that dimension, resulting in 64
possible choices in total (a “choice” is defined as a combina-
tion of decisions on all dimensions). In each game, the prob-
ability of reward for each possible stimulus was determined
by an underlying rule. The rule specified what dimension(s)
were reward-relevant in that game (ranging from one dimen-
sion to all three dimensions, corresponding to 1D, 2D and
3D conditions); within each relevant dimension, one of the
features was designated as the “rewarding feature”, and was

Figure 1: The build-your-own-stimulus task. On each trial,
participants built a stimulus by selecting a feature (marked
by black squares) in each of 0-3 dimensions. After hitting
“Done”, the stimulus showed up on the screen, with features
randomly determined for any dimension without a selection
(here, circle was randomly determined). Reward feedback (1
or 0 points) was then shown.

more likely to generate reward than the other two features.
Participants’ goal was to figure out the underlying rule and
build stimuli with rewarding features to earn as many reward
points as possible. In half of the games (“known” games),
participants were instructed on the number of reward-relevant
dimensions; in the other half (“unknown” games), they were
not. This resulted in six game types in total.

102 participants performed this task on Amazon Mechani-
cal Turk. Each participant completed 18 games (3 games for
each type), with 30 trials in each game.

In all six game types, participants’ performance improved
over the course of a game (Figure 2A). Games were harder
(i.e., participants were less able to learn all the rewarding fea-
tures) as game complexity (the number of relevant dimen-
sions) increased. Participants showed distinct choice behav-
ior in different game types (Figure 2D): in “known” games,
they systematically selected more features on each trial in
more complex games; in “unknown” games, the number of
selected features was not different across game complexities.

Several cognitive models were tested, including a Bayesian
rule learning model, a feature-based reinforcement learning
model, and serial hypothesis testing (SHT) models. Through
extensive model comparison, the cognitive model found
to best predict participants’ choices was the value-based
SHT model, which combines both value-based reinforcement
learning and rule-based hypothesis testing strategies. This
model also included parameters specifying each participant’s
hypothesis space and choice policy, allowing it to capture in-
dividual differences. Model performance (simulated with the
best-fit parameters for each participant) is shown in Figure
2B and 2E. The model achieved an geometric average trial-
wise likelihood of p = 0.22, compared to chance level of
p = 0.0156 (random selection among 64 possible choices). It
was also able to capture how performance depended on task
difficulty, and correctly predicted the qualitative difference

— Known
— Unknown | 1D games 2D games 3D games
— = Chance
Average reward
A 1.0 1.0 1.0
Human 0. Ki-:: 05 |l 05 | e
0.0 0.0 0.0
0 15 30 0 15 30 0 15 30
B 1.0 1.0 1.0
Simulation:

best 05 4—___‘: 05|z 05 |amm=mmooo

cog model

0.0 0.0 0.0
0 15 30 0 15 30 0 15 30
(o3 10 10 10
Simulation: /
05 05— ___ 05 {
N I o L N R
0.0 . 00 . . 00
0 15 30 0 15 30 0 15 30
Trial Trial Trial

features selected

21L& 21/~ 2 ﬁ
Human 1 1 1
0 0 0
0 15 30 0 15 30 0 15 30
E 3 3 3
Simulation: 2 % 2]~ 2 f
best
1 1
cog model
0 0 0
0 15 30 0 15 30 0 15 30
F 3 3 3 /’/_
Simulation: VO 27 S S
RNN 1 1 1
0 - 04 , v 0+ : .
0 15 30 0 15 30 0 15 30
Trial Trial Trial

Figure 2: Performance and choice behavior by game type.
(A-C) The average reward, and (D-F) the number of fea-
tures selected per trial over the course of 1D, 2D and 3D
games (left, middle and right columns); red and blue curves
represent the “known” and “unknown” conditions, respec-
tively. Shaded areas: 1 s.e.m. across participants. Dashed
lines: chance level for that type of game. (A,D): participants’
behavior; (B,E): simulation of the best cognitive model;
(C,F): simulation of the RNN model.

between known and unknown games on the number of fea-
tures selected. However, the model deviated from human data
quantitatively. Cognitive modeling therefore provided impor-
tant insights for understanding human strategy in this task: it
supported the existence of two learning systems (value-based
and rule-based), and shed lights on how the integration of the
two systems depended on task condition (for more details, see
Song et al. (2020)). Unsurprisingly, however, even the best
cognition model could not fully account for all the variance
in behavior.

participant
(one-hot encoding)

o —
/—/% l
ame game
gstart Eiype Cr1 St1 Ita embedding Input
input ayer gy O I
Recurrent layer 1= :[-1 1= :I -1
(LSTM™) 1- -JQ [_;Q
Output layer |:| I:l
[Ct
RNN RNN with participant embedding

Figure 3: RNN model structure. (A) The RNN model.
(B) The RNN with participant embedding model. Circled ar-
rows indicate recurrent connections. Dashed squares indicate
varying layer sizes (set by hyper-parameters).

Apply RNN:s to fit behavior

In this work, we used recurrent neural networks (RNNs) to
fit behavior in this task. The RNN model used here consists
of an input layer, a recurrent layer, and an output layer (Fig-
ure 3A). On each trial, the input variables consist of a game-
start indicator (1 if it is the first trial, O otherwise), the game
type, the participant’s choice (c;—1), the configured stimulus
(s;—1), and the outcome (r;_;), with the last three variables
taken from the previous trial and are zero on the first trial
of a game. Each input variable is one-hot encoded, form-
ing a concatenated binary input vector. The recurrent layer
is a long short-term memory (LSTM) layer, followed by a
linear feed-forward connection to the output layer, which is
then transformed by a Softmax function (with inverse tem-
perature fixed at 1) to determine the probability for choices
on the current trial (c¢;). We used the cross-entropy loss, i.e.,
log likelihood of participant’s choice, as the cost function. We
optimized the network using the Adam optimizer in PyTorch.
Hyper-parameters of the models included learning rate, batch
size, and the size of the recurrent layer.

We split data into training, validation and test sets. The
training set consisted of 16 games from each participant (aug-
mented 1024 times through shuffling the dimensions and fea-
tures; see Discussion for details), and the validation and test
sets each consisted of 1 game per participant. The game
type and game index were balanced (to the extent possible) in
each set to reduce potential bias or order effect. The weights
of the networks were trained on the training set, the hyper-
parameter values were selected based on the validation set
(the selected values were as follows: learning rate of 0.001,
batch size of 10000, recurrent layer size of 50, and early stop-
ping at epoch 28), and all results reported were evaluated on
the test set using the best fit network.

Compare RNN with the best cognitive model

The RNN performed better than the best cognitive model, and
the advantage persisted through the course of a game (Fig-
ure 4A). Because the same network was used to predict all

RNNs vs best cog model RNN vs best cog model

) Mﬂr\
0.0 j
-0.5

0.6

0.4

0.2

0.0 1

Difference in log likelihood >

Difference in log likelihood

[5 10 15 20 25 30

Trial in game Stay Switch

Trial Type

o
o

Hit rate on stay/switch Switch trials
B best cog model

10

0.8) RNN

0.6 +
0.4

0.2

0.0

stay switch stay correct
Choice type

Predicted probability
Predicted probability

incorrect
switch switch

Prediction type

RNN vs best Cog model

m
-n

° r=-0.57

Abs error on Nsejected
Difference in log likelihood

0.0

-04 -0.2 0.0 0.2

best cog model RNN
Model Difference in abs error on nsefected

Figure 4: Comparison between the RNN and the best cog-
nitive model reveals the advantage of RNN in predicting
switch trials and the number of features selected per trial.
(A) Log likelihood difference between the RNN and the best
cognitive model, over the course of a game. Positive values
indicate better prediction by RNN. (B) Log likelihood differ-
ences between the models for stay and switch trials respec-
tively. (C) Probability that the models assigned for staying
or switching on “stay” or “switch” trials, respectively. For
“switch” trials, the probability was calculated as the sum of
all possible switch choices. Blue bars: best cognitive model;
orange bars: RNN; same in (D,E). (D) Model prediction on
switch trials only, showing separately the probability that the
model predicted for stay, correct switch, and incorrect switch
choices (further divided into “fewer”, “more” and “same”, de-
pending on the number of features selected in each choice,
Ngelected, Telative to the true choice). (E) Mean absolute error
in the number of features selected by the two models, calcu-
lated by taking the expectation over all possible choices with
respect to the predicted probability of each choice. (F) Dif-
ference in log likelihood between the RNN and best cognitive
model as a function of their difference in absolute error on
Nselected, TOT €ach participant. The better the prediction on the
number of features selected, the better the RNN did in fitting
the participants’ overall behavior in the test game. Shaded
area (A) and error bars (B-E): 1 s.e.m. across participants.

participants, the RNN described above could not be personal-
ized for individual participants; this is in contrast to cognitive
models that fit a separate set of parameters for each partici-
pant. This can explain the worse fit of the RNN compared to
the best cognitive model on the first trial of each game.

In the following, we try to identify the reasons for the
RNN'’s good performance, and how they might help us un-
derstand what is lacking in the cognitive models. First, we
divided all trials into two types: trials where participants
repeated the previous trial’s choice (“stay trials”) and trials
where they did not (“switch trials”); this analysis ignored the
first trial of each game, which does not fall into either cate-
gory. The advantage of the RNN over the cognitive model is
primarily due to the switch trials (Figure 4B). This result was
not due to the RNN being biased towards predicting switches.
In fact, when examining how accurate the models are at pre-
dicting whether a trial would be a stay or switch trial, the
RNN assigned a higher probability for both choice types than
did the cognitive model (Figure 4C)!, suggesting that it was
better at correctly identifying how the next trial depended on
the previous one (stay or switch).

We focused on switch trials to further investigate the
RNN’s better performance (Figure 4D). We categorized all
possible choices into mistakenly predicting stay, predicting
the correct switch, or predicting a switch to an incorrect
choice. In the latter case, we further categorized the choices
based on whether they involved selecting fewer, the same
number, or more features than did the participant. Consis-
tent with the results above, the RNN made fewer mistakes on
switch versus stay (lower predicted probability for stay, and
higher for correct switch). When it did make a mistake, the
RNN was more likely to at least correctly predict the num-
ber of features selected. This was confirmed by an overall
lower absolute error on predicting the number of features se-
lected (Figure 4E). Finally, across participants, a lower ab-
solute error in predicting the number of features selected by
the RNN as compared to the cognitive model was correlated
with a greater log likelihood advantage (i.e., a better fit) for
the RNN model (Figure 4F).

Taken together, these analyses showed that the RNN was
better at correctly predicting the number of features selected.
This is particularly useful when the choice space is very large
(as in this task), as it helps the RNN identify the correct sub-
space of the true choice. This is, however, not the complete
story: the RNN was more likely to predict the true choice
even within the correct subspace (predicted probability ra-
tio between the true choice and all switch choices with the
correct fgelected 15 0.304 for RNN and 0.241 for the cognitive
model), the reason behind which remains to be investigated.

Embedding captures individual differences

So far, we used the same RNN, referred to as the RNN
model, to predict data from all participants. This works well
if all participants use the same strategy. By fitting cogni-

"Note that (1) predicting “switch” means correctly identifying
the “switch” choice type, but not necessarily correctly predicting
what the participant switched to; (2) stay trials were relatively easy
to predict for both models, thus their likelihood was much higher
than switch trials; additional improvement when the likelihood is
high contributes less to the total log likelihood (cross-entropy loss),
explaining the small difference between the models in Figure 4B.

A B RNNs w/ embedding vs RNN

Best cog model ‘

RNN ‘

RNN w/ embedding ‘

Difference in log likelihood

0.0 0.1 0.2 0.3 0 5 10 15 20 25 30
Likelihood per trial Trial in game

Figure 5: RNN model comparison shows the effect of em-
bedding. (A) Model likelihood comparison between the best
cognitive model, RNN and RNN with participant embedding.
(B) Log likelihood difference between RNN with and without
embedding, over the course of a game. Shaded area: 1 s.e.m.
across participants.

tive models to individual participants, however, we obtained
different parameter estimates, suggesting that there might be
strategy differences across individuals. Thus, we considered
the RNN with participant embedding model (Figure 3B),
by adding an embedding of individual participants to the in-
put layer of the original RNN. The embedding was trained
end-to-end together with the rest of the network. The size of
the embedding layer was an additional hyper-parameter. As
with the other hyper-parameters, its value was selected based
on model performance on a validation set. The best-fit RNN
with participant embedding model used the following values:
learning rate of 0.001, batch size of 10000, recurrent layer
size of 50, participant embedding size of 3, early stopping at
epoch 23.

Adding the participant embedding improved the perfor-
mance of the network (Figure 5A), most notably in the first
two trials of each game (Figure 5B).

Despite the limited improvement in prediction, the embed-
ding was crucial for reproducing individual differences. To
investigate what information is encoded in the embedding,
we performed a PCA analysis on the embedding activity. The
three principal components (PCs) were correlated with the
following cognitive variables of individual participants, re-
spectively (Figure 6 top row): (1) PC1: average number of
features selected per trial; (2) PC2: average number of di-
mensions changed on switch trials; (3) PC3: the overall pro-
portion of switch trials.

We tested how well the network models captured individ-
ual differences by comparing the histograms of these vari-
ables in data with those obtained from model simulations.
The RNN model failed to capture individual differences; in
fact, it could only predict the mean of these variables. In con-
trast, the RNN with participant embedding model, was able to
capture the distribution of all three variables, demonstrating
the usefulness of the embedding. Inspired by the finding that
adding embedding improved model fits primarily in the first
two trials (Figure 5B), we further tested the RNN model by
providing it with participants’ data (choices and outcomes)
for the first two trials in the simulation. With such informa-
tion, the RNN model without embedding was able to capture
the variance of some variables (e.g., number of features se-

PC2
o

. .
15 20 25 30 125 150 175 200 02 0.4 0.6
features selected # dimensions changed Proportion of switch trials

20

o

N
5
Frequency

Frequency
Frequency

RNNw/
embedding

RNN
(real data in
first two trials)

N
S

2t

20 I 20 I
0 0
15 2.0 25 3.0 12 14 16 18 20 0.2 0.4 0.6

features selected # dimensions changed Proportion of switch trials

o

Figure 6: Participant embedding encodes individual dif-
ferences. Top row: the first three principle components of
the embedding layer are correlated with (A) average number
of features selected per trial; (B) average number of dimen-
sions changed on switch trials; (C) the proportion of switch
trials. Bottom rows: histograms of the corresponding vari-
ables in participant data and model simulations of the RNN
model, the RNN with participant embedding model, and the
RNN model that used participants’ data in first two trials of
the game.

lected), but still failed on others (e.g., proportion of switch
trials). This suggests that the embedding layer encodes infor-
mation beyond what can be extracted from first two trials of
data.

Taken together, these results show the usefulness of an em-
bedding layer in RNNs in capturing the characteristics of in-
dividual participants. The embedding layer can then be used
to measure similarity between people and serve as the basis
of finding sub-groups in a population. In fact, similar work
has been done in (Dezfouli, Ashtiani, et al., 2019), where an
RNN with embedding model was fit to two-armed bandit task
data. One of the two dimensions of the embedding space was
found to differentiate between healthy, depressed and bipolar
populations, showing the usefulness of embedding in diag-
nosing patients with cognitive tasks.

Moreover, it is worth noting that the embedding activity
was found to encode cognitively-meaningful information in
the current task. This is promising if generalizable to other
tasks. Neural networks are notoriously hard to interpret de-
spite being powerful prediction tools. The participant em-
bedding, however, helps to make RNNs more interpretable,
and can be useful in identifying important task variables that
determine participants’ strategies. Related, if the embedding
vector is found to be correlated with certain cognitive func-
tions (e.g., working memory capacity), the measurement of
such cognitive functions can then be used to predict a partic-
ipant’s behavior on the task, and vice versa.

RNN performance on fitting simulated data
0.25

0.20 .
shuferDSthﬂeF

0.15

*shuffleDF

0.10

Model likelihood

—=— RNN
0.05 ---- Ground truth

0.00

0 250 500 750 1000 1250
Data size (original dataset as 1)

Figure 7: Dependency of RNN performance on training
data size, and effect of data augmentation. We simu-
lated “data” of varying sizes (1 to 1296 times of the origi-
nal dataset) with the best cognitive model using best-fit pa-
rameters, and used the RNN model to fit these datasets.
Red dashed line: ground-truth likelihood of the generative
model; blue dots: likelihood of the RNN model. RNN perfor-
mance improved with data size, asymptotically approaching
the ground truth. We augmented the simulated data of size
1 by 6, 216, and 1296 times through shuffling dimensions
(shuffleD), features (shuffleF) or both (shuffleDF; as we did
for the true data), and fit the RNN model to the augmented
datasets; results shown in black asterisk. Data augmentation
helped increase the effective data size, but only by roughly 10
times.

Discussion

We showed that RNN models fit human behavior better than
cognitive models in a complex reward-learning task. The best
cognitive model previously developed for this task used a hy-
brid strategy that combines reinforcement learning and se-
rial hypothesis-testing, and considered individual differences
in how participants understand instructions, their hypothesis-
testing policy, and choice policy. However, such a sophisti-
cated cognitive model still failed to fully explain participants’
choices. RNN models, in contrast, made no assumption about
cognitive processes, but were able to generate more precise
predictions both at the group level and for individual partic-
ipants. Analyses of model predictions revealed that the ad-
vantage of RNNs persisted throughout the course of learn-
ing. In particular, RNNs were better at predicting “stay” ver-
sus “switch” trials, i.e., how the current choice related to the
previous one, as well as predicting what subset of the large
choice space was used by participants (i.e., the number of
features selected). As a next step, we can utilize the insights
gained from RNNs to improve cognitive models, in order to
achieve a better account of human behavior in this task.

We hope to demonstrate with this work the general value in
training RNNSs to predict human behavior in complex cogni-
tive tasks. This approach has so far been under-utilized, with
only a handful of endeavors (Dezfouli, Ashtiani, et al., 2019;
Dezfouli, Griffiths, et al., 2019; Fintz et al., 2021). This is po-
tentially due to the large amount of data required for training
neural network models. In the current work, we were able to

augment the training set by utilizing the symmetric task struc-
ture. Assuming that participants’ strategies did not depend
on specific dimensions or features, we generated auxiliary
data by shuffling the dimensions and features in each game
(for both choices and stimuli), which effectively increased the
training data size by about 10 times (although still less than
the ideal size, and we ran the risk of under-fitting; Figure 7).
Such data augmentation may not be possible for every task. A
more general solution for using limited amount of data more
efficiently may be to use cognitive models as priors for neural
network models (Bourgin et al., 2019). As big data becomes
more and more common in cognitive science (Suchow et al.,
2020), this approach would become more powerful.

The RNN approach has been successfully applied in sce-
narios where the available cognitive models (most often RL
models) are not good candidates for explaining observed be-
havior that is largely heuristic or stereotyped (Dezfouli, Ash-
tiani, et al., 2019; Fintz et al., 2021). The current work, in
contrast, showcases another use case for this approach: com-
plex cognitive tasks with rich individual variability. In tasks
such as the current “build-your-own-stimuli” task, where the
best available cognitive model cannot fully capture the rich-
ness in behavior, RNNs can be useful in (1) finding the em-
pirical upper bound for goodness of fit; (2) revealing what is
missing in the cognitive models; (3) capturing the richness of
individual behavioral differences. In this work, we achieved
these goals by conducting model comparison, analyzing the
winning RNN models, and developing RNN models with par-
ticipant embedding. Future work can seek to apply RNNs in
other similarly complex cognitive tasks to improve our under-
standing of human cognition and its variability.

Acknowledgment

This work was supported by the National Institute of
Drug Abuse (RO1DA042065) and Army Research Office
(WI911NF-14-1-0101). MBC was supported by World Pre-
mier International Research Center Initiative, MEXT, Japan.

References

Bourgin, D. D, Peterson, J. C., Reichman, D., Russell, S. J.,
& Griffiths, T. L. (2019). Cognitive model priors for pre-
dicting human decisions. In International conference on
machine learning (pp. 5133-5141).

Cover, T. M. (1999). Elements of information theory. John
Wiley & Sons.

Dezfouli, A., Ashtiani, H., Ghattas, O., Nock, R., Dayan, P.,
& Ong, C. S. (2019). Disentangled behavioural represen-
tations. In Advances in neural information processing sys-
tems (pp. 2254-2263).

Dezfouli, A., Griffiths, K., Ramos, F., Dayan, P., & Balleine,
B. W. (2019). Models that learn how humans learn: the
case of decision-making and its disorders. PLoS computa-
tional biology, 15(6), e1006903.

Fintz, M., Osadchy, M., & Hertz, U. (2021). Using
deep learning to predict human decisions and cognitive

models to explain deep learning models. bioRxiv. doi:
10.1101/2021.01.13.426629

Lu, Q., Hasson, U., & Norman, K. A. (2020). Learning to
use episodic memory for event prediction. bioRxiv.

Shen, S., & Ma, W.J. (2016). A detailed comparison of opti-
mality and simplicity in perceptual decision making. Psy-
chological review, 123(4), 452.

Song, M., Niv, Y., & Cai, M. B. (2020). Learning what is rel-
evant for rewards via value-based serial hypothesis testing.
In 42nd annual meeting of the cognitive science society.

Suchow, J. W., Griffiths, T. L., & Hartshorne, J. K. (2020).
Workshop on scaling cognitive science. In the 42nd annual
virtual meeting of the cognitive science society.

Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D.,
Soyer, H., Leibo, J. Z., ... Botvinick, M. (2018). Prefrontal
cortex as a meta-reinforcement learning system. Nature
neuroscience, 21(6), 860-868.

Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T.,
& Wang, X.-J. (2019). Task representations in neural net-
works trained to perform many cognitive tasks. Nature neu-
roscience, 22(2), 297-306.

