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Abstract

There is no single way to represent a task. Indeed, despite experiencing the same task

events and contingencies, different subjects may form distinct task representations. As

experimenters, we often assume that subjects represent the task as we envision it. How-

ever, such a representation cannot be taken for granted, especially in animal experiments

where we cannot deliver explicit instruction regarding the structure of the task. Here, we

tested how rats represent an odor-guided choice task in which two odor cues indicated

which of two responses would lead to reward, whereas a third odor indicated free choice

among the two responses. A parsimonious task representation would allow animals to learn

from the forced trials what is the better option to choose in the free-choice trials. However,

animals may not necessarily generalize across odors in this way. We fit reinforcement-learn-

ing models that use different task representations to trial-by-trial choice behavior of individ-

ual rats performing this task, and quantified the degree to which each animal used the more

parsimonious representation, generalizing across trial types. Model comparison revealed

that most rats did not acquire this representation despite extensive experience. Our results

demonstrate the importance of formally testing possible task representations that can afford

the observed behavior, rather than assuming that animals’ task representations abide by

the generative task structure that governs the experimental design.

Author summary

To study how animals learn and make decisions, scientists design experiments, train ani-

mals to perform them, and observe how they behave. During this process, an important

but rarely asked question is how animals understand the experiment. Merely through

observing animals’ behavior in a task, it is often hard to determine if they understand the

task in the same way as the experimenter expects. Assuming that animals represent tasks
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differently than they actually do may lead to incorrect interpretations of behavioral or

neural results. Here, we compared different possible representations for a simple reward-

learning task in terms of how well these alternative models explain animal’s choice behav-

ior. We found that rats did not represent the task in the most parsimonious way, thereby

failing to learn from forced-choice trials what rewards are available on free-choice trials,

despite extensive training on the task. These results caution against simply assuming that

animals’ understanding of a task corresponds to the way the task was designed.

Introduction

Much knowledge of the world is acquired not from instructions, but through observations and

inference. For example, you might choose which campus cafeteria to visit by checking their

daily menus. Eventually, you may realize that cafeterias A and B have the same menu (unbe-

knownst to you, they are run by the same caterer). This implicit knowledge allows you to apply

whatever you learn about one dining location to the other: upon hearing that cafeteria A is

serving your favorite dish, you can get it at the close-by cafeteria B.

Acquiring such knowledge can be considered as learning the structure of a task, or in rein-

forcement learning (RL) terminology, learning a state representation for the task [1–3]. A state

representation forms the basis upon which values (expectations about future rewards) and pol-

icies (rules for action in different settings) can be learned [4]. In tasks in which different set-

tings (e.g., cafeteria A or B) lead to the same outcome (the same dishes on the menu), the state

representation for A and B can be shared. The benefit of this is two-fold: first, it allows com-

pression of state representations, excluding irrelevant variation and thus reducing the com-

plexity of the learning problem. Second, it accelerates learning as only a single experience of a

tasty salad in cafeteria A is required in order to exploit that knowledge in both locations.

While a range of alternative state representations can support learning in any given setting,

one that matches the “true” underlying structure of a task supports efficient learning and accu-

rate task performance.

The challenge for a learner to build an appropriate state representation is particularly acute

when there is no explicit instruction on the “rules” for solving a task. This occurs by necessity

in experiments on non-human animals, in which subjects are trained solely through ongoing

experience. Experimenters know the ground-truth structure of a task, and often assume the

subjects understand it similarly. However, even relatively simple tasks may be represented in a

multitude of ways, often with only subtle differences in overt behavioral performance. Despite

rapid progress in the development of artificial learning algorithms that can extract appropri-

ately abstract task representations from reinforcement [5–8], it remains unknown how animals

form a state representation solely through their experience of stimuli, rewards and the contin-

gency of each of these on their actions. In particular, it is an open question how animals might

generalize their learning about upcoming rewards across distinct features of experience,

thereby building a concise state representation of a task.

Results

We directly tested the extent of generalization in learned state representations that guide

choice behavior in an odor-guided decision-making task in rats [9]. Rats were trained to sam-

ple an odor at a central odor port, before responding at one of two fluid wells (Fig 1A). The

odor stimulus provided a cue for which of two wells would be baited with a sucrose reward.

Two odors signalled “forced choice” trials, one indicating reward will be available in the left

PLOS COMPUTATIONAL BIOLOGY Minimal cross-trial generalization in representation learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009897 March 25, 2022 2 / 15

expressed in this article are the authors’ own and

do not reflect the view of the NIH/DHHS.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009897


well, and one indicating the right well. In either case, choosing the unrewarded well terminated

the trial immediately. A third odor—“free choice”—indicated reward will be available in either

well. Importantly, if a “valid” well were chosen on any trial (i.e., the rewarded well on forced-

choice trials, or either well on free-choice trials), the delay to and amount of reward was deter-

mined by the side of the well, not the odor. Unsignaled to the animal, in each block of the task,

one well delivered a “better” reward outcome, either at a shorter delay or a larger amount than

the other well; reward contingencies changed between blocks during a session (see Fig 1B for

details).

Because of the shared reward setting across odors, it would be beneficial for the animal to

acquire a representation of the task in which learning from valid forced-choice trials general-

izes to the same well location in free-choice trials. This representation aligns with the underly-

ing generative structure of the task, and would support faster learning when reward

contingencies change between blocks.

Fig 1. The odor-guided choice task and animals’ behavior. (A) The experiment apparatus included an odor port and two fluid wells where rewards

were delivered. To start each trial, the animal first poked into the odor port; after 0.5 seconds, one of three odors was delivered, signaling the current

trial type. One odor signaled a left forced-choice trial, another a right forced-choice trial, and a third indicated free choice between left and right wells.

After odor offset, the animal could make a choice by entering either the left or right fluid wells. Reward was delivered if they made the correct choice on

a forced-choice trial and as long as they successfully made one of the choices on a free-choice trial. (B) Block sequence in an example session. Sessions

always started with two “delay blocks” (blocks 1 and 2), followed by two “magnitude blocks” (blocks 3 and 4). In block 1, the “short” reward (delivered

0.5s after well entry) was available in one well and the “long” reward (delivered 1–7s after well entry) in the other; the reward contingency switched

between the wells on block 2. In block 3, “long” reward then changed to “big” reward (two sucrose drops delivered 0.5s after well entry), while “short”

reward stayed the same but is now referred to as “small” reward (one sucrose drop) in comparison to the alternative; these reward contingencies were

switched again on block 4. The well that was initiated with the better (short) reward option was randomized across sessions. (C) Learning curves for

forced-choice (red) and free-choice (blue) trials. The curves are aligned to block-switch points (gray dashed lines), with the first and last 10 trials of each

block shown. Accuracy is evaluated as the percentage of trials the animal chose the better option for that trial type (forced-choice trials: the rewarded

well; free-choice trials: the well with reward at shorter delay or larger amount). Shaded areas represent 1 s.e.m across animals (N = 22). (D) Coefficients

of a hierarchical logistic regression predicting the accuracy of the first free-choice trial after a previous incorrect free-choice as a function of the number

of intervening correct forced-choice trials. Left (error bars): coefficients for individual animals, ordered by dataset, with error bars representing 95%

highest posterior density interval (HDI). Right (histogram): the posterior distribution of the group mean, with dashed lines representing 95% HDI. At

both individual and group levels, 95% HDI of the coefficients overlapped with zero, suggesting that there was minimal generalization of learning from

correct forced-choice trials to subsequent free-choice trials.

https://doi.org/10.1371/journal.pcbi.1009897.g001
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To study how rats interpret the structure of this odor-guided choice task, we collated behav-

ior from several experiments using the same behavioral paradigm [10–12]. On average, across

sessions, rats learned to choose the well with the better reward on free-choice trials within each

block, while maintaining high choice accuracy on forced-choice trials throughout the session

(Fig 1C). To determine whether rats learned to choose the better option on free-choice trials

by generalizing from rewards delivered on forced-choice trials (and not from experience in

free-choice trials alone), we first performed a behavioral analysis. If animals had knowledge of

the shared reward setting, reward outcomes in valid forced-choice trials should provide infor-

mation about the reward available in the two wells, and as a result, improve performance on

subsequent free-choice trials. We therefore conducted a hierarchical logistic regression pre-

dicting the accuracy of free-choice trials as a function of how many rewarded forced-choice

trials the animal had experienced since the last incorrect free-choice trial (i.e., the last time they

chose the worse well). A positive coefficient would indicate use of forced-choice experience to

inform free-choice decisions. We did not find evidence for such signature of generalization

(Fig 1D), either at the group level (95% highest posterior density interval (HDI) of the group

mean of the coefficient: [-0.022, 0.035]), or for individual animals (95% HDI of individual

coefficients all include zero). Adding trial index in the block as an additional regressor (to

account for the increase in accuracy over each block) did not change the results.

To examine the extent of generalization more directly, we constructed a series of reinforce-

ment learning (RL) models with different state representations of the task (Fig 2), and tested

how well these alternative models could predict the trial-by-trial choice behavior for each ani-

mal. In all models, animals learned the values of left and right actions for each odor through

trial and error, choosing actions by comparing their values, with some decision noise (see

Methods). What differed between the models was the assumed state representation, i.e.,

whether and how learning generalized across odors. The four-state model assumed full general-

ization between valid responses on forced-choice trials and corresponding responses on free-

choice trials, with shared states between them; this model correctly reflects the generative

structure of the task. The six-state model assumed no generalization between trial types, with

separate states based on odor and action. We also considered two hybrid models to probe for

partial generalization: the hybrid-value model combined values from the four-state and six-

state representations at decision time, with a relative weight parameter w4. Finally, the hybrid-
learning model assumed six states, but generalized across two pairs of states (“Left-Forced” and

“Left-Free”; and similarly for right choices) with a generalization rate ηg.
The free parameters of each model were fit to choice data from all animals using hierarchical

Bayesian inference with Markov Chain Monte Carlo (MCMC) sampling [13, 14]. We evaluated

model fits using the Watanabe–Akaike information criterion (WAIC; Fig 3A, lower values

indicate better fits to data) [15]. Model comparison showed clear evidence for the six-state

model, which out-performed the four-state model with a WAIC score that was 1211±78

(mean ± standard error across samples [16]) lower. The hybrid models were only slightly better

than the six-state model (WAIC difference: −134 ± 24 for the hybrid-value model, and −53 ± 17

for the hybrid-learning model), suggesting little engagement of the four-state representation.

Posterior estimates of the parameter values for the hybrid models revealed the dominance of

the six-state representation: in the hybrid-value model, posterior estimates showed that the

weight parameter w4 was smaller than 0.5 (equal reliance on the six- and four-state representa-

tions) both at the group level (95% HDI of group mean: [0.05, 0.28]; Fig 3B) and for all but one

rat (Fig 3E). Similarly, in the hybrid-learning model, the learning rate η was an order of magni-

tude higher than the generalization rate ηg (95% HDI for group mean η: [0.22, 0.28], ηg: [0,

0.01]; Fig 3C). In fact, most rats had a generalization rate close to zero (Fig 3D). These results

indicate that, at the group level, rats did not acquire knowledge of the shared reward
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Fig 2. State representations of RL models. (A) The four-state model: free-choice trials and correct forced-choice

trials share the same “Left” and “Right” states; “Right-NoRwd” and “Left-NoRwd” are the corresponding states for

incorrect forced-choice trials. This is the true structure of the task as designed by the experimenters, as the same

reward was available in forced-choice trials and free-choice trials if a correct choice was made. (B) The six-state

model: each of the three odors leads to one of two states for left and right choices, with no generalization across odors.

(C) The hybrid-value model: this model uses both the four-state and six-state representations (with a total of 10

states), with state values combined using weights w4 and (1 − w4) (illustrated as vertical boxes). (D) The hybrid-
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contingencies between valid forced-choice trials and free-choice trials, consistent with the ear-

lier behavioral analysis. Instead, most rats appeared to learn about the two trial types separately.

Interestingly, we found marked heterogeneity in model fits at the individual level. Although

for most animals the hybrid models did not predict choice better than the six-state model, for

a subset of rats, model comparison indicated some degree of generalization (i.e., individual

ΔWAIC of hybrid compared to the six-state model was negative; Fig 3 and S1 Fig). This indi-

cated that the extent to which the animals recruited the four-state representation varied, which

was confirmed by the span of individual parameter estimates of the generalization rate ηg and

the four-state weight w4. Estimates of these two parameters were positively correlated at the

individual level (r = 0.82, p< .001; Fig 3E), indicating the consistency of the two hybrid mod-

els. For only one animal, the four-state model fit better than the six-state model; this rat also

learning model: the same state representation and learning rule (green arrows, with learning rate η) as in the six-state

model, with additional generalization (orange arrows, with generalization rate ηg) between states representing valid

forced choices and free choices. For simplicity, shown here only half of the learning and generalization updates (when

reward is delivered in Left-Forced and Right-Free states), each representing generalization from forced-choice states to

free-choice states or vice versa; the same rules apply to Right-Forced and Left-Free states. Boxes in white and gray

represent rewarded and unrewarded states, respectively.

https://doi.org/10.1371/journal.pcbi.1009897.g002

Fig 3. The six-state representation explains animals’ choices better than the four-state alternative. (A) Model comparison results. Left: WAIC

difference between all four models and the six-state model for the entire dataset (summed across all trials from all animals). Lower values indicate better

model fits. Error bars represent standard errors across samples [16]. Right: individual differences in average WAIC per trial between all models and the

six-state model. Each marker corresponds to an individual animal, with different markers representing different datasets (same in D and E). (B)

Posterior distribution of the group mean of four-state weight w4 in the hybrid-value model. Dashed lines represent 95% HDI. w4 = 0 corresponds to the

six-state model, and w4 = 1 corresponds to the four-state model. (C) Posterior distribution of the group mean of learning rate η (in green) and

generalization rate ηg (in orange) in the hybrid-learning model. Dashed lines represent 95% highest density interval (HDI). Generalization is almost

negligible due to the low values of ηg. (D) Posterior mean of η and ηg for each animal. The horizontal dashed line corresponds to the six-state model; the

diagonal dashed line corresponds to the four-state model. (E) The correlation between w4 in the hybrid-value model and ηg in the hybrid-learning

model at the individual level.

https://doi.org/10.1371/journal.pcbi.1009897.g003
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had w4 > 0.5 and the largest ηg value. Comparing model fit for the first half to the second half

of the behavioral sessions per individual showed the reliance on a shared representation was

slightly stronger in later sessions (assessed both through comparison between the six-state

and hybrid-value models, and the magnitude of the w4 parameter in the hybrid-value model;

S2 Fig), suggesting generalization on this task may have emerged with experience.

In principle, adopting a state representation that conforms to the true generative structure

of the task should afford the most efficient learning and maximum accuracy, and thus maxi-

mize reward. To test the predicted performance of models that used different representations,

we simulated choice behavior using the hybrid-value model with the best-fit group-level

parameters (i.e., the “average rat”; see Methods). Changing the weight parameter w4 from 0

(equivalent to the six-state model) to 1 (equivalent to the four-state model) greatly accelerated

learning in the early part of each block, as information could be appropriately generalized

across trial types (Fig 4A). However, asymptotic accuracy at the end of a block was only slightly

improved with shared reward representation, as was also reflected in the average reward yield

in these simulations (Fig 4B). Indeed, despite the gains in learning after block changes, adopt-

ing a shared reward representation only increased reward per trial by *0.05 drops across the

task. Thus, in this task at least, there was not strong pressure to learn a task representation that

closely matches the generative structure of the environment.

Discussion

Our results showed that most rats did not use a parsimonious state representation in the odor-

guided choice task, even though, in principle, this representation could have helped them

learn faster and earn more reward. Rather than exploiting a shared representation between

valid forced-choice and free-choice trials, most rats learned the values of actions separately for

each odor, with little to no generalization between trial types. This finding was consistent

across both behavioral analyses and more detailed computational modeling approaches.

Why did most rats fail to exploit the shared reward structure of this task, even though rats

have been shown to acquire quite complex task representations in other settings [17–19]? First

and foremost, while the six-state representation is not as compact as the four-state and does

not capture the true generative statistics of the task, it is sufficient to support good perfor-

mance in this task: high accuracy for forced choice trials throughout the session and a reversal

in preference between the left and right reward wells after block changes in the free choice tri-

als. Indeed, our simulations found surprisingly little average benefit from learning the more

compact four-state representation in terms of reward yield, suggesting that this task does not

strongly incentivize acquiring such a representation. This might also imply that forming the

more parsimonious task representation carries some cognitive cost. Indeed, the six-state repre-

sentation assumes separable features for odor and location, while the four-state representation

requires encoding the interaction between them. Accordingly, the prevalence of the simpler

six-state representation in the choice behavior of these animals may be seen as less of a “fail-

ure” and more the result of a rational allocation of resources [20, 21].

Learned generalization in task representation has been shown in “acquired equivalence”

[22], where animals respond equivalently to two stimuli that have been followed by the same

consequence (e.g., food). If one stimulus is later paired with a new outcome (e.g., electric

shock), the animals exhibit the same (fear) response to the other stimulus, demonstrating the

shared representation. In the current task, however, odor cues only lead to the same conse-

quence if followed by the correct action. The added complexity of instrumental contingencies

perhaps limited the generalization strategies available in purely Pavlovian settings [23, 24]. The

instrumental contingencies in this task may also prompt animals to use a different learning
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strategy entirely, acquiring a policy over available actions in a given state directly (e.g. [25])

rather than via action value representations as we have modeled here. In policy learning, gen-

eralization between odor trial types would be limited as alternative actions are grouped

together, separating forced-choice from free-choice trials through the presence of the unre-

warded choice option in these trial-types [26].

We found rats to segregate learning by trial type, with little generalization between them.

This may indicate that odor representations dominated other features in this task. Rats display

rapid learning, excellent memory and highly discriminative responses for odors, in line with

the ethological relevance of these cues [27–29]. In contrast, a preference for spatial representa-

tion might have favored the four-state model. It may be that receiving reward at the well where

choice was reported interfered with learning of spatial location as a dominant state component

of the task. To better understand the conditions under which generalization may be acquired,

it would be interesting to investigate other choice tasks that permit different representational

strategies. For example, in a similar task in which reward identity (rather than delay) is

changed between blocks [30], the distinct encoding of identities may help animals group

Fig 4. Simulations show faster learning, but a modest increase in reward earned, under the four-state representation. (A) Learning curves for free-

choice trials in data simulated using the best-fit parameter values (i.e., posterior mean of the group-level parameters) of the hybrid-value model, but

setting w4 to 1 or 0 (corresponding to the four-state and six-state models, respectively). The four-state model (w4 = 1) shows faster learning in each of

the blocks and higher asymptotic accuracy than the six-state model (w4 = 0). (B) Average amount of reward per trial obtained by the models (dots and

curve) and by animals (error bar, mean ± 1 s.e.m.). Dots represent model-simulation results obtained with their best-fit parameter values. The colored

curve represents simulation results of the hybrid-value model with its best-fit parameters but varying w4 from 0 to 1. Average reward earned increases

with w4, but the differences are relatively small (on the order of 5%). Rats performed, on average, in line with the six-state model and markedly worse

than the four-state model. (C) Average reward obtained by each animal is positively correlated with their mean w4 parameter estimate (r = 0.64,

p = 0.0015). Animals with a state representation more similar to four-state earned more reward on average. Dataset coded by marker type.

https://doi.org/10.1371/journal.pcbi.1009897.g004
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together trials with the same reward identity, potentially facilitating generalization. Further,

studying the very early stages of training, including the staggered introduction of different trial

types, may demonstrate critical features of early experience that favor one type of task repre-

sentation over another. Future work may also benefit from examining behavioral features

beyond choices (e.g. reaction times), as well as neural representations, in order to further dis-

sect the learning of task representation. Of note, we did not test for other forms of generaliza-

tion across trials in our data, for instance, whether acquired knowledge about the block

structure of the task facilitates faster learning after contingency changes in subsequent ses-

sions. This kind of generalization has been observed in other odor-guided choice tasks as well

as in numerous reversal paradigms [31, 32], and likely reflects learning of a higher-level struc-

ture of the task than we have investigated here.

Although none of the animals represented the generative task structure, few rats did acquire

partial knowledge. This presents interesting directions for future studies: how was the partial

knowledge acquired by these animals, and what gave rise to this individual difference in learn-

ing? Fitting our computational models to the first and second half of data separately provides

some hints: overall, animals’ task representation was more hybrid towards the second half, and

this was driven by a small subset of animals who relied more heavily on the shared representa-

tion in later sessions (S2(A)–S2(C) Fig). However, such representation learning did not result

in a higher reward gain for these animals in later sessions (S2(D) Fig). It was unclear what con-

tributed to the differential learning effects between animals as the amount of representational

change was not associated with task experience (i.e., the number of sessions performed; S2(E)

Fig). Nevertheless, we can conclude from our data that the acquisition of shared representa-

tions through experience is quite slow, and longer training experience may be needed to study

this learning process.

Previous theoretical and empirical studies may help shed light on the principles of represen-

tation learning that facilitate generalization, as well as individual variability in this process. For

instance, models of latent-cause inference propose animals use similarity to infer whether dif-

ferent experiences arise from a shared latent state [33–35]. Individual differences in task repre-

sentations may also arise from idiosyncrasies in immediate experience, long-term effects of

development or even genetic differences [36, 37].

In designing experiments, we often choose to randomize over irrelevant features, for

instance, what side a stimulus is presented on, or whether an outcome is experienced through

a forced- or free-choice trial (e.g., [38]). It is tempting to assume that our subjects also know to

gloss over these nuisance task factors, however, learning to represent a task optimally is not a

trivial process [39], especially when we cannot give subjects explicit instructions. Our results

highlight that the factors influencing state representation in behaving animals extend beyond

the experimenter-controlled generative statistics of a task, and reveal fine-grained differences

in individual strategies that may be elicited in even a relatively simple reward learning task.

Such discrepancies between the assumed representation and the one animals are actually using

may be especially critical when interpreting neural data, but also in understanding behavioral

data, and the effects of interventions. This suggests a humble approach to analysis that leans

on the data—rather than an experimenter-centric view—to reveal how animals model the

tasks they are performing.

Methods

Subjects

The behavioral data of 22 rats (322 sessions in total) performing an odor-guided choice task

(see description below) were obtained from three previous studies [10–12]. Data from 7 rats
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(76 sessions) were obtained from [11]: these animals had electrodes implanted in their left ven-

tral striatum for single-unit recordings (neural data not used in this paper; same for the other

two studies). Data from 9 rats (75 sessions) were obtained from the control group in [10]:

recording electrodes were implanted in their left or right ventral tegmental area. Finally, data

from 6 rats (171 sessions) were obtained from the sucrose control group in [12]: self-adminis-

tration catheters (that were used only for the cocaine group, not the control animals analyzed

here) and driveable electrodes were implanted, and a twelve-day self-administration of maxi-

mum two sucrose pellets via lever press was completed a month before the experiment. All ani-

mals received extensive prior training on the task before data acquisition.

The odor-guided choice task

Trial structure. Rats were trained on a well-studied odor-guided choice task [9]. The

experiment apparatus is shown in Fig 1A. Each trial started with the illumination of a light

inside the experimental box. When the light was on, a nose poke into the odor port resulted in

the delivery of one of three distinct odor cues. At odor offset, the rat had 3 seconds to make a

response at one of the two fluid wells located below and to the left or right of the odor port.

One odor cue was reliably associated (through excessive pre-training) with reward delivery in

the left well (a left forced-choice trial), a second odor was similarly associated with reward

delivery in the right well (a right forced-choice trial), and a third odor was associated with

reward delivery at either well (a free-choice trial). Odors were presented in a pseudorandom

sequence such that 7 out of 20 trials were free choices, and the remaining were approximately

equal numbers of left and right forced choices. If the rat made a correct response in a forced-

choice trial, or either response in a free-choice trial, a reward was delivered, with a delay and a

magnitude determined by the side of the well and the current block (see below for block struc-

ture); otherwise, the light would turn off immediately, signaling the end of the trial.

Block structure. Each session (one per day) consisted of four blocks (Fig 1B). All sessions

started with two “delay blocks”, followed by two “magnitude blocks”. In “delay blocks”, reward

(one drop of sucrose) at one well was delivered immediately (500ms; “short”), while reward at

the other well was delayed (1–7s; “long”). The timing of the delayed reward varied according

to an adaptive staircase procedure to ensure a fixed proportion of “long” free choices across

individual rats (see respective papers from which data were reanalyzed for details). In “magni-

tude blocks”, the delay of reward was held constant (500ms), but the magnitude was one drop

(“small”) at one well, and two drops in succession (“big”; drops 500ms apart) at the other well.

Each drop of reward was a 0.05 ml bolus of 10% sucrose solution. For the first block of each

session, the reward contingencies were assigned randomly to the two wells; they were then

switched in the second block. In the third block, reward delivery at the “short” reward well

remained the same (now called “small”) while delivery at the previously “long” well became

“big”; these contingencies were switched again in the fourth block. All block switches were

unsignaled. Blocks were on average 70 trials long, with varying lengths (standard deviation: 14

trials).

Reinforcement-learning models with different state representations

We characterized the pattern of choices across a session using a series of reinforcement-learn-

ing (RL) models. We assumed the Rescorla-Wagner update rule [40], with reward discounted

according to the delay between well entry and reward delivery, d (in units of seconds):

Vtþ1ðsÞ ¼ VtðsÞ þ Zðgdrt � VtðsÞÞ; ð1Þ

where Vt(s) is the value of state s on trial t and rt is the amount of reward (0, 1 or 2) delivered
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on the same trial. Learning rate η and discount rate γ were free parameters bounded in the

range [0, 1].

We denoted the possible choices on each trial by a 2 [left,right]. The decision variables gov-

erning the likelihood of left and right choices, DV(left) and DV(right), were determined by

combining the value of the predicted state following that action (denoted by sa) with a side

bias term b and a perseveration term p:

DVðaÞ ¼ VtðsaÞ þ b � Ia;right þ p � Ia;at� 1
; ð2Þ

where Ii;j is 1 for i = j and 0 otherwise. Thus, b< 0 indicates a general bias towards choosing

the left side, and b> 0 indicates a bias towards right; p> 0 indicates a tendency to repeat the

same choice as the previous trial (regardless of the odor cue), and p< 0 indicates a tendency to

avoid the preceding choice and choose the alternate action.

Decision variables for the left and right choices were compared using a softmax (logistic)

function to determine the probability of each choice, with a free parameter β controlling the

randomness of choices (the slope of the logistic function). Finally, we also assumed a lapse rate

of λ, where lapses involved a completely random choice.

PðleftÞ ¼ ð1 � lÞ �
1

1þ e� bðDVðleftÞ� DVðrightÞÞ
þ
l

2
: ð3Þ

Alternative models. Core to all RL models is the state representation of the task with

which an agent is engaged. For the current task, we considered two distinct representations:

four-state and six-state. We built four alternative learning models: one each of the four-state

and six-state representations, and two hybrid models with mixed state representations (Fig

2E).

• The four-state model assumed full knowledge of the shared reward representation. Thus,

there were four subsequent states upon choice, with free-choice trials and correct forced-

choice trials sharing the same subsequent states “Left” and “Right”. Reward outcomes in

both trial types were used to update the value of these shared states. Incorrect forced choices

led to two non-rewarding subsequent states “Left-NoRwd” and “Right-NoRwd”.

• The six-state model assumed no knowledge of the shared reward representation. Each odor

led to a separate pair of subsequent left and right states (six states in total). Reward outcomes

(including no reward upon incorrect choices) were used to update the value of the subse-

quent state determined by the current odor and choice.

• The hybrid-value model assumed both four-state and six-state representations, with two sets

of state values updated in parallel following each outcome. When predicting choices, the

hybrid model calculated the values for left and right choices using a weighted sum of the val-

ues under each representation:

VðsÞ ¼ w4V4ðsÞ þ ð1 � w4ÞV6ðsÞ;

where V4 and V6 were the state values under four- and six-state representations, respectively,

and w4 controlled the balance between the two representations. For w4 = 1, the hybrid-value

model was equivalent to the four-state model, whereas for w4 = 0, it was equivalent to the

six-state model, interpolating smoothly between the two models for the range of values of

w4 2 [0, 1].
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• The hybrid-learning model assumed a mixed representation. It had six subsequent states

whose values were updated in the same way as in the six-state model, with learning rate η. In

addition, generalization between free-choice trials and correct forced-choice trials occurred

by using outcomes on those trials to update values of the other subsequent state with the

same choice, with generalization rate ηg. For ηg = 0, the hybrid-learning model was equiva-

lent to the six-state model, whereas for ηg = η, it was equivalent to the four-state model, inter-

polating smoothly between the two models for the range of values of etag 2 [0, η].

All four models had the following free parameters: η, γ, β, b, and p. In addition, the hybrid-

value model had a free parameter w4, and the hybrid-learning model had a free parameter ηg.

Hierarchical model fitting using Stan

In order to test whether and to what extent rats acquired and took advantage of the shared

reward structure of the task, we fit the above four RL models to their choice data. Hierarchical

model fitting was performed with PyStan [41], where the parameters of individual animals are

assumed to be drawn from a group-level distribution. For each model, we ran 4 chains of

Hamiltonian Monte Carlo with 2000 iterations each (among which 1500 were warm-up sam-

ples). Model performance was evaluated using the Watanabe-Akaike information criterion

(WAIC) [15], with a lower WAIC value indicating a better fit to the data. Results from this

hierarchical fitting procedure were compared to those obtained by fitting each animal individ-

ually, and the parameter estimates and model comparison results were found to be consistent.

Model simulation

Through hierarchical model fitting, we obtained posterior estimates of model parameters

(both the group-level distribution, and individual parameters for each animal; S3 Fig). We

then simulated the model to perform the task using these parameter values. The reward con-

tingencies in the simulation matched the original experiment, including the block sequences,

total number of trials per session, the proportion of forced-choice and free-choice trials, and

the titration of the reward delay. For each model, we simulated a single agent governed by the

group mean parameters (i.e., the “average rat”), which we used to calculate and compare the

average amount of reward obtained (see Fig 4).

Supporting information

S1 Fig. Difference in WAIC per trial for each animal shows individual variability. We used

the six-state model as a baseline to which we compared the four-state model (in orange), the

hybrid-value model (gray) and the hybrid-learning model (white). Results are grouped accord-

ing to the original study in which the data were first reported [10–12]. For the majority of ani-

mals, the four-state model fit much worse than the six-state. However, for a small subset, the

four-state model performed equally well or even better (for rat 4) than the six-state model.

(TIF)

S2 Fig. Split-half analysis shows slow learning of the shared representation through experi-

ence. (A) On average, the hybrid-value model provided only a modest improvement in model

fit over the six-state representation in the first half of sessions per subject, however it showed a

marked improvement in model fit over the six-state representation for the second half of ses-

sions. (B) Most animals had very similar ΔWAIC (between hybrid-value model and six-state

model; same below) in the first and second halves; a small subset had a lower ΔWAIC in the

second half, representing an increase in use of the shared representation. Most animals had a

higher w4 in the hybrid-value model in the second half of sessions than in the first half, also
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pointing towards greater generalization during the later sessions. (C) Difference in w4 between

the second and first half of sessions was correlated with the difference in ΔWAIC between the

second and first half of sessions. (D) Acquisition of the shared representation did not result in

more reward gains: there was no correlation between either ΔWAIC or w4 difference (between

the second and first half) with the reward amount difference (p = .69 and p = .21, respectively).

(E) Having more task experience (more sessions performed) was not associated with a greater

ΔWAIC or w4 difference (p = .16 and p = .74, respectively). Note the animals who had the larg-

est changes in ΔWAIC magnitude experienced very few sessions. Two animals with only one

session of data were excluded from this split-half analysis. Throughout: each dataset is coded

by marker type indicating the original study [10–12].

(TIF)

S3 Fig. Posterior estimates of parameter values in the hybrid-value model. From top to bot-

tom: the group-level posterior distributions; the posterior means of individual parameters for

each animal; MCMC samples of individual parameters (sampled from a distribution with the

above mean and individual variances). Different colors indicate different animals; datasets are

ordered according to the original study [10–12].

(TIF)

S4 Fig. Learning curves for individual animals. Left: average accuracy over sessions; right:

learning curves within a session (averaged across sessions), similar to Fig 1C but for each ani-

mal. Because of the noisiness of individual learning curves, only animals with over 10 sessions

of data are shown. Animals are numbered in the same order as in Fig 1D and S1 Fig. These

individual performance and learning curves largely resemble the group average.

(TIF)
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