Learning what is relevant for rewards via value learning and hypothesis testing
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Research Question

How do people learn what is relevant for reward in a muilti-
dimensional environment, with probabilistic outcomes and
multiple (or even unknown number of) relevant dimensions?
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What makes a good coffee?

. Brand? Origin? Roast level? Brewing method? ...
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The build-your-own-stimulus task
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6 game types:

1D-, 2D-, 3D-relevant
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Known, Unknown #D

18 games x 30 trials/game
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Learning is modulated by task complexity (#D)
and known vs. unknown (only 3D)
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Strategy differences in known vs. unknown #D games

# selected features:

Post-game survey on
rewarding features:
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Model fitting and comparison

value-based SHT with reset
random-switch SHT

feature RL with decay- E =

Bayesian rule-learning

Likelihood per trial
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» Both feature RL with decay

Trial

Value-based SHT with reset

and serial hypothesis testing S 03
fit better than Bayesian model; g
» Mixture model combining both b
strategies fits best; § 01
» Easier games (1D) are fitted better _7;;
than harder ones (2/3D). o known = 204 5 3
B Unknown # relevant dimensions
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Computational models

Choice policy (all models): softmax on the expected reward of choices,

with additional costs associated with selecting features.

S(ER(@) =3, 6:(a))

P(a) =

(1) Bayesian rule-learning model

9 ,eﬁ(ER(a’)—c-zz. 5i(a’))

» Performs Bayesian inference over all possible hypotheses
P(h|a1:tar1:t) X P(Tt‘ha at)P(h|a1:t—17T1:t—1)

 Expected reward of choices: FR(a Z P(h

(rlh, a)

(2) Reinforcement learning model: feature RL with decay
» Learns 9 feature values with separate learning rates for selected

features (n,) or computer-generated (7,)

Vi(fij) = Viea(fij) +n(re — ER(ay))

» Expected reward as the sum of feature values

— Z V(fi,a’i)

1
* Values of features not in stimulus decay towards zero

Vi(fij)=d-Vici(fis), it 7 #
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(3) Serial hypothesis testing model: random-switch SHT

* Deciding whether to stay or switch: Pr(stay) =
* If yes, randomly switch to another hypothesis

(4) Value-based SHT with reset
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| + e Petay (P(r[R)=0)

* Pr(stay) defined the same as random-switch SHT
* Also learns feature values (reset at hypothesis switch), used to

determine which hypothesis to switch to.
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Mixture of value learning and hypothesis testing;

Strategy depends on task condition

Bayesian rule-learning

7 N
Reduce memory load & computation
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Feature value learning Serial hypothesis testing

accurate \ / fast

Value-based SHT

B + SHT + feature value learning
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Conclusions

* Evidence for strategies involving feature-value learning and
serial hypothesis testing.

* In known #D condition, people are sensitive to task complexity:
serially testing hypotheses in 1D-relevant condition, and
relying on feature value learning in 3D-relevant condition.

* In unknown #D condition, people use a mixed strategy.
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Learning about coffee

If only one important factor: % —
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If almost every aspect matters:
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If no mformatlon IS given: mixed strategy
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Ongoing works

* |Infer tested hypotheses (currently: choices = hypotheses)
» Test and compare different hypothesis-switch policies

» Value-based: should feature values be reset?

. Memory—based: cluster episodic memories?

Observations:

; Choose one

Participant’s inferred |
' to test next

candidate latent causes
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