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Abstract

Realistic and complex decision tasks often allow for many possible solutions. How do we

find the correct one? Introspection suggests a process of trying out solutions one after the

other until success. However, such methodical serial testing may be too slow, especially in

environments with noisy feedback. Alternatively, the underlying learning process may

involve implicit reinforcement learning that learns about many possibilities in parallel. Here

we designed a multi-dimensional probabilistic active-learning task tailored to study how peo-

ple learn to solve such complex problems. Participants configured three-dimensional stimuli

by selecting features for each dimension and received probabilistic reward feedback. We

manipulated task complexity by changing how many feature dimensions were relevant to

maximizing reward, as well as whether this information was provided to the participants. To

investigate how participants learn the task, we examined models of serial hypothesis test-

ing, feature-based reinforcement learning, and combinations of the two strategies. Model

comparison revealed evidence for hypothesis testing that relies on reinforcement-learning

when selecting what hypothesis to test. The extent to which participants engaged in hypoth-

esis testing depended on the instructed task complexity: people tended to serially test

hypotheses when instructed that there were fewer relevant dimensions, and relied more on

gradual and parallel learning of feature values when the task was more complex. This dem-

onstrates a strategic use of task information to balance the costs and benefits of the two

methods of learning.

Author summary

When solving complex tasks with many potential solutions, we often try the solutions one

at a time until success. However, when the set of solutions is too large to exhaust, or if

feedback is noisy, we may also rely on implicit reinforcement learning to evaluate multiple

options concurrently. In this study, with a novel task that allows participants to actively

search for unknown rules in a large search space, we find that human participants
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combine both strategies, namely serial hypothesis testing and reinforcement learning, in

their decisions. Depending on the complexity of the task participants change the balance

between the strategies, in line with their costs and benefits.

Introduction

Learning in a complex environment, with numerous potentially relevant factors and noisy out-

comes, can be quite challenging. For example, when learning to make bread, many decisions

need to be made: the amount of yeast to use, the flour-to-water ratio, the proof time, the bak-

ing temperature. It can be hard to learn the correct decision for each of these factors, especially

when the results are variable even if following the same procedure: the ambient temperature

may affect rising, the oven temperature may not be as accurate as its marks, etc., making the

outcome unreliable.

Learning scenarios like this are quite common in life. In controlled laboratory experiments,

each of the key components of such learning—multiple dimensions of features interacting,

probabilistic outcomes, and active choice of learning examples—has traditionally been investi-

gated separately. For instance, decisions based on combining multiple factors (features) are

common in category learning tasks [1, 2] where multidimensional rules determine the cate-

gory boundaries. However, feedback is often deterministic in these tasks, making it unclear

how multidimensional learning occurs when choice outcomes are less reliable. In contrast, the

need to integrate and learn from stochastic feedback has been widely studied in probabilistic

learning tasks [3–5], but often with simple rules that involve only one relevant feature dimen-

sion. Finally, the freedom to choose learning examples (rather than selecting among a few

available options) is at the core of active learning [6–8], where studies have focused on testing

how well human decisions accord with principles of information gain maximization [9] or

uncertainty-directed exploration [10].

As few tasks have combined all these components (but see [11] for active learning with

probabilistic multidimensional stimuli), it remains unclear how people learn actively in an

environment with complex rules (with multiple and potentially an unknown number of rele-

vant dimensions) and probabilistic feedback. To study this, we developed a novel decision

task: participants were asked to configure three-dimensional stimuli by choosing what features

to use in each dimension, earning rewards that were probabilistically determined by features

in a subset or all of these dimensions. To earn as much reward as possible, participants needed

to figure out which dimensions were important through trial-and-error, and learn what spe-

cific features yielded rewarding outcomes in those dimensions.

Despite the computational challenge and combinatorial explosion of possible solutions,

human beings are remarkably good at solving such complex tasks. Usually, after a few success-

ful or unsuccessful attempts, an amateur baker will gradually figure out the rules for bread-

making. Similarly, participants in our task improved their performance over time, and learned

to correctly identify rewarding features through experience. To understand how they achieved

this, we turned to the extensive literature regarding algorithms that support learning when it is

not clear what features are relevant (i.e., representation learning) [12, 13]. Previous work has

suggested several mechanisms for such learning [14, 15]: a value-based reinforcement-learning

mechanism that incrementally learns the value of stimuli based on trial-and-error feedback,

and a rule-based mechanism that explicitly represents and evaluates hypotheses. In previous

studies, the two mechanisms were often examined separately, as which of them is used often

depends on the specific task. For instance, in probabilistic reward learning tasks, people have
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been shown to learn through trial-and-error to identify relevant dimensions, and gradually

focus their attention onto the rewarding features in those dimensions [3–5]. In contrast, in cat-

egory learning, people seem to evaluate the probability of all possible rules via Bayesian infer-

ence, with a prior belief favoring simpler rules [2, 16, 17] (note there also exists other strategies

in category learning [14, 15, 18, 19], e.g., exemplar-based models). However, the two learning

mechanisms are likely simultaneously engaged in most tasks [20], and contribute to different

extents depending on how efficient they are in each specific setting. Direct hypothesis-testing

can be more efficient when fewer hypotheses are likely and when feedback is relatively deter-

ministic, whereas incremental learning may be more beneficial with numerous possible com-

binations and stochastic outcomes.

Here, we systematically examined the integration of the two learning mechanisms and how

it depends on task condition. Specifically, we varied task complexity by setting the rules such

that one, two, or all three dimensions of the stimuli were relevant for obtaining reward; in

addition, we manipulated whether such information (i.e., rule dimensionality) was explicitly

provided to participants. We fit computational models that represent each learning mecha-

nism, and their combination, to participants’ responses, and compared how well they pre-

dicted participants’ choices. We found evidence that people used a combination of the two

learning mechanisms when solving our task. Furthermore, when participants were informed

of the task complexity, they used this information to set the balance between the two mecha-

nisms, relying more on serial hypothesis testing when the task was simpler, with fewer candi-

date rules, and more on reinforcement learning when more rules were possible. Our findings

shed light on how rule-based and value-based mechanisms cooperate to support representa-

tion learning in complex and stochastic scenarios, and suggest that humans use task complex-

ity to evaluate the effectiveness of different learning mechanisms and strategically balance

between them.

Results

Experiment: The “build your own icon” task

In our task, stimuli were characterized by features in three dimensions: color (red, green,

blue), shape (square, circle, triangle) and texture (plaid, dots, waves). In each of a series of

games, a subset of the three dimensions was relevant for reward, meaning that one feature in

each of these relevant dimensions would render stimuli more rewarding (henceforth the

“rewarding feature”).

To earn rewards and figure out the underlying rule, participants were asked to configure

stimuli (“icons”) by selecting features for any of the dimensions (Fig 1); for dimensions in

which they did not make a selection, the computer would randomly select a feature. The result-

ing stimulus was then shown on the screen, and the participant would receive probabilistic

reward feedback (one or zero points) based on the stimulus: the more rewarding features

included in the stimulus, the higher the reward probability, with the lowest reward probability

being p = 0.2 and the highest being p = 0.8 (see Table 1). The participants’ goal was to earn as

many reward points as possible.

Each game had one, two, or three relevant dimensions (henceforth 1D-, 2D-, and 3D-rele-

vant conditions). This information was provided to participants in half of the games (“known”

condition), with the other half designated as “unknown” games. This resulted in six game

types in total. Each participant played three games of each type for a total of 18 games, in a ran-

domized order. Each game was comprised of 30 trials. The relevant dimensions and rewarding

features changed between games.
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Fig 1. The “build your own icon” task. Participants built stimuli by selecting a feature in zero to three dimensions (marked by black squares). After

hitting “Done”, the stimulus showed up on the screen, with features randomly determined for any dimension in which participant did not make a

selection (in this example, circle was randomly determined). Reward feedback was then shown.

https://doi.org/10.1371/journal.pcbi.1010699.g001

Table 1. The reward probability of a stimulus in each game type (1D, 2D, and 3D-relevant games) was determined

by the number of rewarding features in the stimulus. Each row corresponds to one game type. Across all game types,

the reward probabilities were 20% if the stimulus contained no rewarding features, 80% if it contained all rewarding

features, and linear interpolations between 20% and 80% if it contained a subset of rewarding features. For example, in

a 3D-relevant game, if the stimulus contained two of the three rewarding features, the reward probability for that trial

would be 60%. These probabilities guarantee that a participant who performs randomly would have 40% probability of

obtaining a reward across all game types. This can be seen by calculating, for each game type, the chance of randomly

choosing a certain number of rewarding features, multiplied by the corresponding reward probability. Equal chance

probability across game types ensured that chance behavior would not be informative about the number of relevant

dimensions in unknown games.

Game type Number of rewarding features

0 1 2 3

1D-relevant 20% 80% – –

2D-relevant 20% 50% 80% –

3D-relevant 20% 40% 60% 80%

https://doi.org/10.1371/journal.pcbi.1010699.t001
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102 participants were recruited through Amazon Mechanical Turk. In an instruction phase,

participants were told that each game could have one, two or three dimensions that were

important for reward, and were explicitly informed about the reward probabilities in Table 1.

They were tested on their understanding of the instructions, and each played three practice

games with informed rules (relevant dimensions and rewarding features). The main experi-

ment then commenced. In “known” games, the number of relevant dimensions was informed

before the start of the game in the form of a “hint”; participants were, however, never told

which dimensions were relevant or which features were more rewarding. The start of

“unknown” games was also signaled; however, no hint was provided in these games. At the

end of each game, participants were asked to explicitly report, to their best knowledge, the

rewarding feature for each dimension, or indicate that this dimensions is irrelevant to reward,

as well as their confidence level (0–100) in these judgements. After the experiment, partici-

pants received a performance bonus proportional to the points they earned in three randomly

selected games.

Learning performance and choice behavior

Across all six game types, participants’ performance improved over the course of games, with

overall better performance and faster learning in less complex games, i.e., games with fewer

relevant dimensions (Fig 2A). A mixed-effects regression on reward probability against trial

index, task complexity (1D-/2D-/3D-relevant) and game knowledge (known/unknown)

showed significant effects of trial index (estimated slope 0.0012 ± 0.0008, p< .001) and task

complexity (estimated slope −0.044 ± 0.007, p< .001), as well as a two-way interaction

between trial index and task complexity (estimated slope −0.0027 ± 0.0003, p< .001).

The overall worse performance in more complex games was not necessarily a failure of

learning, but rather the result of limited experience (only 30 trials per game), as participants’

average reward rate across all games was 90.2% of that of an approximately optimal agent (see

Methods) playing this same task (87%, 89% and 95% in the 1D-, 2D- and 3D-relevant games,

respectively). Participants’ performance was better when informed of the task complexity

in 3D-relevant games (paired-sample t-test on reward probability for 3D-relevant games

between “known” and “unknown” conditions: t101 = 3.37, p = .001, uncorrected, same for

tests below). There was no effect of game knowledge on performance in simpler games (1D-

relevant: t101 = −1.9, p = .060; 2D-relevant: t101 = 0.02, p = .98).

Participants also showed distinct choice behavior in different game types (Fig 2B): a mixed-

effects regression on the number of features selected showed significant effects of trial index

(more features were selected over time; estimated slope 0.0087 ± 0.0003, p = .013) and game

knowledge (more features were selected in “unknown” games; estimated slope −0.63 ± 0.09,

p< .001), two-way interaction effects for all pairs of variables (all p< .05), and a significant

three-way interaction (p< .001). Specifically, in “known” games, participants selected more

features when informed that more dimensions were relevant (mixed-effects linear regression

slope: 0.29 ± 0.03, p< .001); in “unknown” games, unsurprisingly, the number of selected fea-

tures did not differ between task complexities (p = .47).

Participants’ responses to the post-game questions also reflected similar behavioral patterns

(see full results in S1(C) Fig). Specifically, we analyzed how often they correctly identified the

rewarding features (Fig 2C), and when they falsely identified an irrelevant dimension as

relevant (“false positive”, Fig 2D; note that in 3D-relevant games, this measure was 0 by

design, thus these games were excluded from this analysis). A two-way repeated-measures

ANOVA on correct responses showed a significant main effect of task complexity (F2,202 =

273.7, p< .001), and a significant interaction between task complexity and game knowledge
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(F2,202 = 21.3, p< .001); the ANOVA on false positive responses showed significant main

effects of both task complexity (F1,101 = 32.0, p< .001) and game knowledge (F1,101 = 93.3, p<
.001), and a significant interaction between them (F1,101 = 90.8, p< .001). Comparing the

“known” and “unknown” conditions: in 1D-relevant games, participants? correct responses

did not differ based on condition (Fig 2C; post hoc Tukey test: t101 = 1.81, p = .46), consistent

with the choice behavior in Fig 2A; however, participants made more false positive responses

in the “unknown” condition (Fig 2D; t101 = −6.27, p< .001), indicating that not knowing the

dimensionality of the underlying rule led them to incorrectly attribute rewards to features on

multiple dimensions, which might be the reason for the larger number of features selected in

the “unknown” condition (Fig 2B). In 3D-relevant games, participants identified more correct

Fig 2. Participants’ behavior in the “build your own icon” task. (A, B): Performance and choices over the course of

a game, by game type. (A) Participants’ average probability of reward (based on the number of rewarding features in

their configured stimuli), over the course of 1D-, 2D- and 3D-relevant games (left, middle and right columns). Red and

blue curves represent “known” and “unknown” conditions, respectively. For all game types, chance reward probability is

0.4 and 0.8 is the maximum reward probability. Shading (ribbons around the lines) represents ±1 s.e.m. across

participants. �� p< .01. For grouping of these learning curves by task complexity, see S1 Fig. (B) Same as in (A), but for

the number of features selected. (C, D): Responses to post-game questions regarding the rewarding features in each

game condition. (C) Average number of correctly-identified rewarding features; (D) Average number of false positive

responses, i.e., falsely identifying an irrelevant dimension as relevant. ��� p< .001. Error bars represent ±1 s.e.m. across

participants.

https://doi.org/10.1371/journal.pcbi.1010699.g002
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features in the “known” condition than in the “unknown” condition (Fig 2C; t101 = 13.53, p<
.001), consistent with their better learning performance in “known” 3D-relevant games

observed in Fig 2A.

In sum, participants’ behavior was sensitive to both task complexity and game knowledge.

They performed better and learned faster in simpler games. Game knowledge had a smaller

impact on performance, and participants showed different choice behavior in “known” versus

“unknown” games: in “known” games, the number of features they selected was moderated by

the instructed task complexity; while in “unknown” games, the number was similar across dif-

ferent complexities.

Modeling two learning mechanisms

To characterize participants’ learning strategy and explain the behavioral differences between

game conditions, we considered two candidate learning mechanisms [15, 20]: an incremental

value-based mechanism that learns the value of stimuli based on trial-and-error feedback, and

a rule-based mechanism that explicitly represents possible rules and evaluates them. We tested

computational models representing each of these mechanisms, as well as a hybrid combination

of the two, by fitting each model to participants’ trial-by-trial choices and comparing how well

they predict task behavior. We describe each model below; the mathematical details are pro-

vided in Methods.

The value-based mechanism was captured by a feature-based reinforcement learning model

[3]. Reinforcement learning is commonly used to model behavior in probabilistic reward-

learning tasks, where participants need to accumulate evidence across multiple trials to esti-

mate the value of each choice. In particular, we used the feature RL with decay model from

prior work with a task similar to ours [3]. This model assumes that participants learn values

for each of the nine features using a Rescorla-Wagner update rule [21]: feature values in the

current stimulus are updated proportional to the reward prediction error (the difference

between the outcome and the expected reward). The expected reward for each choice (i.e.,

combination of features selected) is calculated as the sum of its feature values. At decision

time, choice probability is determined by comparing the expected reward for all choices using

a softmax function. Additionally, values of features not present in the current stimulus are

decayed towards zero. This is particularly relevant for features that had been valued previously

but are later not consistently selected, i.e. features that the participant presumably no longer

deems to have high values, or those originally selected by the computer. The decay mechanism

allows their value to decay down to zero despite not being chosen (otherwise, the model

updates only the values of chosen features). Note that, this feature-based RL model, although

simple, is well suited to the additive reward structure of the task, and provides a better fit than

more complex RL models, such a conjunction-based RL model [22] or an Expert RL model

that combines a few RL “experts” each learning different combinations of the dimensions [23].

In contrast to the value-based mechanism, the rule-based mechanism directly evaluates

hypotheses regarding what combinations of features yield the most reward in a game, which

we refer to as “rules”. In “known” games, there are 9, 27 and 27 possible rules for 1D-, 2D- and

3D-relevant games, respectively; in “unknown” games, all 63 rules are possible.

There are multiple possibilities for how people learn the correct rule. One is to use Bayesian

principles to evaluate the probability that each rule is the correct one; we term this a Bayesian

rule-learning model. After each outcome, this model optimally utilizes feedback to calculate

the likelihood of each candidate rule, and combines this with the prior belief of the probability

that each rule is correct (initially assumed to be uniform across all rules that accord with the

“hint”) to obtain the posterior probabilities of each rule. The expected reward for a choice is
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then calculated by marginalizing over the posterior belief of all possible rules. Mirroring the

reinforcement learning model above, in our implementation, the final choice probability was

determined by a softmax function over the expected reward from each choice. In a multi-

dimensional category learning task, a similar Bayesian rule learning model has been shown to

characterize how people learn categories better than reinforcement learning models [2].

Bayesian inference is computationally expensive and memory-intensive. A simpler alterna-

tive for the rule-base strategy is serial hypothesis testing, which assumes that people only test

one rule at a time: if the evidence supports their hypothesis, they will continue with it; other-

wise, they switch to a different rule, until the correct one is found. The idea of serial hypothesis

testing has long roots in the category learning literature [24, 25]. Recently, it has also been

applied in probabilistic reward learning tasks [26] and was shown to better account for human

behavior than the Bayesian model. Following [26], we considered a random-switch serial

hypothesis-testing model (random-switch SHT model; Fig 3) that assumes that people test

hypotheses about the underlying rule one at a time. When testing a hypothesis, the model esti-

mates its reward probability by counting how often recent choices following this rule were

rewarded. The probability of abandoning the current hypothesis and switching to testing a

random different hypothesis is inversely proportional to the reward probability. We assumed

that people’s choices were often consistent with their hypotheses, but lapsed to random choices

with a small (p = λ) probability.

The SHT and RL mechanisms are not necessarily mutually exclusive. We thus also consid-

ered a hybrid model by incorporating RL-acquired feature values into the choice of a new

hypothesis in the serial hypothesis testing model. In particular, when switching hypotheses,

the hybrid model favored hypotheses that contain recently rewarded features. We term this

model value-based serial hypothesis testing model (value-based SHT model; Fig 3; see

Methods for detailed equations for all models).

Evidence for a hybrid learning mechanism

We fit all four models to participants’ choice data in this task and evaluated model fits using

leave-one-game-out cross-validation (Fig 4A and S2(A) Fig). Among them, the Bayesian rule

learning model, even though optimal in utilizing feedback information, showed the worst fit to

participants’ choices (likelihood per trial: 0.045 ± 0.003; mean ± s.e.m.). This was potentially

Fig 3. A diagram of the serial hypothesis testing models.

https://doi.org/10.1371/journal.pcbi.1010699.g003
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because the large hypothesis space (up to 63 hypotheses) made exact Bayesian inference intrac-

table. Both the feature RL with decay model and the random-switch SHT model showed better

fits (likelihood per trial: 0.118 ± 0.008 and 0.160 ± 0.009, respectively). Compared to the Bayes-

ian model, both models have lower computation and memory load: the RL model learns nine

feature values individually and later combines them; the random-switch SHT model limits the

consideration of hypotheses to one at a time. The hybrid value-based SHT model fit the data

best (better than either component model; likelihood per trial: 0.202 ± 0.009), suggesting that

participants used both learning strategies when solving this task.

There was additional evidence for the involvement of both learning mechanisms in partici-

pants’ behavior. The rule-based mechanism was evident from the influence of task instruc-

tions: both the numbers of features selected (Fig 2B) and the reported rewarding features in

the post-game questions (Fig 2C and 2D) differed between “known” and “unknown” condi-

tions. There is no direct way to incorporate such influences in a reinforcement learning

model, but a rule-learning model can easily do so, for instance, by constraining the hypothesis

spaces according to the instructions (S3 Fig: the number of features selected differs between

known and unknown games for SHT models but not the RL model). In fact, participants

adapted their prior beliefs based on their knowledge of the game types (S2(B) Fig): in known

games, they assigned a higher prior probability to the hypotheses that are consistent with the

task instructions; in unknown games, they deemed more complex rules more likely a priori.
On the other hand, the influence of value-based learning was evident in the order in which

participants clicked on features to make selections. In most cases, participants followed the

spatial order in which dimensions appeared on the screen, either top-to-bottom or the reverse.

When the clicks violated the spatial orders, however, they followed the order of learned

feature values, starting from the most valuable feature, at a frequency significantly above

chance (t101 = 7.63, p< .001). Such behavior of following the order of learned feature values

instead of the spatial order was more frequent in trials when participants switched hypotheses

than when they continued testing the same hypothesis (t101 = 5.71, p< .001; in this analysis,

for simplicity, switch trials were identified based on changes in choice), further supporting the

value-based SHT model.

In sum, participants’ strategies in this task could not be explained by either reinforcement

learning or serial hypothesis testing strategies alone. The combined hybrid model explained

participants’ behavior best, also capturing the dependence of performance on task complexity

(Fig 4B) and the qualitative differences between choice curves in “known” and “unknown”

conditions (Fig 4C), which neither component model could capture (S3 Fig).

The contribution of the two mechanisms depends on task complexity

Given evidence that participants used both learning strategies in this task, we next asked to

what extent each strategy contributed to decision making. We addressed this question by com-

paring the hybrid model with the two component models: the difference in likelihood per trial

between the hybrid model and each component model was taken as a proxy for the contribu-

tion of the mechanism not included in the component model. Note that we can treat the RL

and SHT models as component models. This is because setting the learning rate to zero effec-

tively “turns off” the RL process, reducing the hybrid model to the random-switch SHT model.

Similarly, setting model parameters such that hypotheses are switched every trial “turns off”

the SHT process, resulting in a model very similar to the feature RL model (the only difference

is the likelihood of returning to the previous hypothesis or choice).

Across participants, a higher contribution of SHT was associated with a faster reaction time

(Fig 5A; Pearson correlation: r = −0.27, p = .01), and a higher contribution of RL was
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associated with a higher reward rate (Fig 5B; r = 0.23, p = .02). These results suggest that, com-

paratively, serial hypothesis testing was an overall faster and less effortful strategy, and aug-

menting hypothesis testing with values yielded more reward.

To optimize for reward and reduce mental effort costs, it is advantageous to rely on the

serial hypothesis testing strategy when the task is simpler, for instance, in lower-dimensional

games with smaller hypothesis spaces. Indeed, when tested separately, the correlation between

reward rate and contribution of RL was only significant for 2D- and 3D-relevant games (1D:

r = −0.03, p = .75; 2D: r = 0.27, p< .01; 3D: r = 0.32, p< .01; these correlations were signifi-

cantly different between 2D- and 3D-relevant games and 1D-relevant games [27]: z = −2.3, p =

.023 for 2D vs 1D games, and z = −2.7, p = .007 for 3D vs 1D games). In contrast, with a larger

hypothesis space, serial hypothesis testing is less efficient, and there should be a higher incen-

tive to use the value learning strategy.

Fig 4. Model comparison supports both reinforcement learning (RL) and serial hypothesis testing (SHT)

strategies. (A) Geometric average likelihood per trial for each model (i.e., average total log likelihood divided by

number of trials and exponentiated). Higher values indicate better model fits. Dashed lines indicate chance. Error bars

represent ±1 s.e.m. across participants. (B, C) Simulation of the best-fitting value-based SHT model. The same learning

curves as in Fig 2 but for model simulation.

https://doi.org/10.1371/journal.pcbi.1010699.g004
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We indeed observed such a strategic trade-off between the two learning mechanisms: in

“known” games, the contribution of hypothesis testing decreased as the dimensionality of the

task increased (Fig 5C; estimated slope in a mixed-effect linear regression: −0.0631 ± 0.0051,

p< .001), whereas the contribution of value learning increased with task complexity (Fig 5D;

estimated slope: 0.0178 ± 0.0013, p< .001). In contrast, in “unknown” games, in which task

complexity information was unavailable to participants, the contribution of the two mecha-

nisms was more stable across game conditions (estimated slopes: −0.0144 ± 0.0042 for SHT,

p< .001; −0.0011 ± 0.0012 for RL, p = .389, consistent with a significant three-way interaction

between task complexity, game knowledge and model component in a repeated measures

ANOVA on likelihood difference per trial in Fig 5C and 5D: F(2, 202) = 47.9, p< .001). Taken

together, these results suggest that participants took advantage of information regarding task

complexity to strategically balance the use of two complementary learning mechanisms.

Discussion

Using a novel “build your own icon” task, we studied learning of multi-dimensional rules with

probabilistic feedback as a proxy for real-world learning in situations where it is unknown a
priori what aspects of the task are relevant to solving it, and where learners have agency to

intervene on the environment and test hypotheses. In our task, participants created stimuli

Fig 5. Strategic balance of two learning mechanisms. (A) The contribution of serial hypothesis testing (SHT) was

inversely correlated with reaction time such that participants who responded faster used SHT to a greater extent. (B)

The contribution of reinforcement learning (RL) was correlated with average reward rate: participants for whom

adding the RL component improved the model fit to a greater extent earned more rewards on the task, on average.

Each dot represents one participant. (C, D) Contribution of RL and SHT for each game type. The contribution of each

component was measured as the difference in likelihood per trial between the hybrid value-based SHT model and the

other component model (SHT: the feature RL with decay model; RL: the random-switch SHT model). Error bars

represent ±1 s.e.m. across participants.

https://doi.org/10.1371/journal.pcbi.1010699.g005
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and tried to earn more rewards by identifying the most rewarding stimulus features. Partici-

pants performed this task at various signalled or unsignalled complexity levels (i.e., rewarding

features were in one, two or three stimulus dimensions). They demonstrated learning in all

conditions, with their performance and strategies influenced by task condition. Through

behavioral analyses and computational modeling, we investigated the use of two distinct but

complementary learning mechanisms: serial hypothesis testing that evaluates one possible rule

at a time and is therefore simple and fast to use, but results in slow learning when many rules

are possible and must be tested sequentially, and reinforcement learning that learns about all

features in parallel and is more accurate in the long run, but requires maintaining and updat-

ing more information. We found that a hybrid model that incorporated the advantages of both

mechanisms explained participants’ behavior best. In addition, we showed that human partici-

pants demonstrated a strategic balance between the two mechanisms depending on task com-

plexity, suggesting that they were able to gauge which mechanism is more suitable in each

condition. Specifically, they tended to use the simpler and faster serial hypothesis testing strat-

egy when they knew that fewer dimensions matter in the decision, but relied more on incre-

mentally learning feature values when they knew multiple dimensions were important.

The current study ties together large bodies of work on reward learning and category learn-

ing in multi-dimensional environments. Previous studies have extensively investigated how

humans learn about complex but deterministic categorization rules [1, 2, 15], as well as how

they learn through trial-and-error to identify a single relevant dimension [3, 22, 28, 29]. The

former type of tasks are hard to learn because of the unknown form of the underlying rules,

while the latter tasks focus on how humans integrate information over time in stochastic envi-

ronments. Both are common challenges for human decision-making, and they often co-occur

in daily tasks—in new situations, we often do not know a priori what aspects of the task are

relevant to its correct solution, and feedback may be stochastic due to inherent task properties

or—even in deterministic tasks—not knowing what dimensions are relevant to outcomes,

making outcomes seem stochastic. Therefore, we imposed both challenges to investigate

human learning strategies under such realistically complex scenarios. Our results help unite

the various findings on value-based or rule-based strategies in previous studies. We show that

learning in complex and stochastic environments engages both strategies, with participants

combining them flexibly according to the demands of the task. This can potentially explain

why value-based strategies are often observed in probabilistic learning tasks [3–5], and rule-

based strategies in category learning tasks [2].

A few studies have pursued a similar path. For example, Choung and colleagues [30] stud-

ied a similar probabilistic reward-learning task with multiple relevant dimensions. They exam-

ined hypothesis-testing strategies based on values learned with naïve RL models. Through

model comparison, they showed that values learned alongside hypothesis testing were carried

over when hypotheses switched, consistent with our value-based SHT model. The novelty of

our work is in systematically manipulating the complexity of the environment and partici-

pants’ knowledge about it, to help provide a comprehensive understanding on how people’s

learning strategy adapts to different situations. Another similar set of tasks are contextual ban-

dit problems [31–33], where the amount of reward for each bandit (option) is determined by

the context (thus leading to multi-dimensional rules that depend on both stimulus and con-

text). In these tasks, participants were found to use a Gaussian process learning strategy to gen-

eralize previous experience to similar instances. Gaussian processes define a probabilistic

distribution over the underlying rules, from which one can sample candidate rules as hypothe-

ses. For example, in a task with binary contextual features [31], participants were shown to

consider alternative options that were expected to lead to improvements upon the current one,

consistent with the rule-based strategy discovered in the current task.
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Still, we considered only a simple linear combination of multiple dimensions to determine

reward: each relevant dimension contributed equally to reward probability, in an additive

manner. In everyday tasks, the composition can be more complex, with different dimensions

contributing differently to rewards [11, 29] and potential interactions between dimensions.

We postulate that similar hybrid strategies will be adopted regardless. However, it can be hard

to model the hypothesis-testing strategy in such scenarios, due to the much larger hypothesis

space. An important question is how people construct their hypothesis space, and how likely

they deem each hypothesis a priori. There is evidence that people favor simpler hypotheses

[16]. They also may not have a fixed hypothesis space, but instead construct new hypotheses

only when the existing ones can no longer account for observations [34], or they may modify

their existing hypotheses on the go with small changes [35].

It is worth noting the unique free-configuration design of the current task. In most repre-

sentation-learning tasks, stimuli (i.e., the combination of features) are pre-determined, and

participants are asked to select between several available options, or make category judge-

ments. These tasks are easy to perform, but it is hard to isolate participants’ preference for sin-

gle features. Our task directly probed people’s preference (or lack thereof) in each of the three

dimensions. In addition, we were able to hold baseline reward probability constant across dif-

ferent game types (participants responding randomly would always earn reward with p = 0.4)

while varying the complexity of underlying rules, which avoided providing information on

rule complexity in “unknown” games. Our free-configuration task also resembles many daily

life decisions where choices across multiple dimensions have to be made voluntarily, from

ordering a pizza takeout, to planning a weekend getaway trip.

Along with these advantages, the active-learning free-configuration design may also alter

the strategy people use, compared to a passive learning scenario. On the one hand, free-choice

may encourage hypothesis testing, making this strategy more efficient by allowing participants

to seek direct evidence on their hypotheses. On the other hand, learning may be hindered due

to confirmation bias, commonly observed in self-directed rule-learning tasks (aka “positive

test strategy” [36]). Indeed, participants over-estimated the number of rewarding features in

1D “unknown” games as compared to “known games” (Fig 2D), suggesting that they failed to

prune their hypotheses when the underlying rule was simpler. To fully understand the impact

of free choice, future work can compare active and passive settings with a “yoked” design. This

can help understand whether the findings reported here can be generalized to passive-learning

tasks, and what may be unique to the active-learning setting.

To model the integration of the two learning strategies, we introduced the hybrid value-

based SHT model. The assumptions in this model are relatively minimal, which can be a rea-

son why the hybrid model failed to quantitatively predict the number of features participants

selected (Fig 4C). To improve model prediction, we explored several alternatives for the mod-

el’s assumptions (S4 Fig; see Methods for details): (1) not always testing a hypothesis: if none

of the hypotheses has a high value, the participant can decide not to test a hypothesis, and let

the computer configure a completely random stimulus instead; (2) flexible threshold for deter-

mining whether to switch hypothesis or not, based on reward probability of the corresponding

game condition (Table 1); (3) favoring choices that are supersets of the current hypothesis:

rather than designing stimuli consistent with the current hypothesis (with a lapse rate), partici-

pants may tend to select more features than what their hypothesis specifies. The first and third

alternative assumptions improved model fits, but the second did not. We then considered a

“full” model that used the better alternative for each assumption. This more complex model

improved average likelihood per trial on held-out games by 0.033 ± 0.006. In terms of predict-

ing the number of features selected by participants, however, this model behaved similarly to

the original hybrid model (S3 Fig). For simplicity, we therefore reported the original hybrid
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model in the Results. We note that, despite the additional assumptions, the full model predic-

tions still deviated from human behavior, e.g., it under-predicted the differences in the number

of selected features between the “known” and “unknown” conditions, compared to the empiri-

cal data. This may be due to the simplified assumptions on hypothesis testing: for example, in

the model, only one hypothesis was tested at each point in time, and hypothesis switching was

purely based on values rather than systematically sweeping through features in a dimension, or

decreasing the number of features chosen.

The flexibility of the value-based SHT model opens up the space for exploring more com-

plex hypothesis-testing strategies. For instance, hypotheses may be formed in a hierarchical

manner when the rule complexity is unknown, i.e., participants may first reason about the

dimensionality of the game, and then the exact rule. Currently, the hypothesis-switching policy

depends only on values, whereas participants may start from simpler rules, and switch to more

complex rules, as suggested in the SUSTAIN model [37], or vice versa, starting with complex

rules and then pruning them to only the necessary components. Another possibility is models

that test multiple hypotheses in parallel. In the current model, only one hypothesis is tested at

a time, yet participants may consider multiple possibilities simultaneously, for instance, the

current configuration and all its subsets. Further, the current study did not evaluate the role of

uncertainty-directed exploration [10] and when to terminate it during learning. This is due to

the large number of options available in the current task, making the optimal uncertainty-

directed policy intractable. Future studies can design targeted tasks to investigate this question.

Lastly, the current model assumes that learning of feature values happens in parallel to and

independently of hypothesis-testing. However, value learning may also be affected by hypothe-

sis testing. For example, the amount of value update can be gated by the current hypothesis

[20, 38]. The current modeling framework (and openly accessible data) can be used in future

work to systematically examine these and other alternative models.

In conclusion, we studied human active learning in complex and stochastic environments,

with a novel self-configuration decision task. Through behavioral analyses and computational

model comparison, our study revealed the strategic integration of two complementary learning

mechanisms: serial hypothesis testing using reinforcement-learning values to select new

hypotheses. Rule-based and gradual learning systems are often considered opponents or alter-

natives, whereas our results suggest cooperation rather than arbitration. This may be a general

rule in complex, realistic decision tasks. When the going gets rough, the brain would do best to

optimally integrate all the methods at its disposal.

Methods

Ethics statement

This study was approved by the Institutional Review Board at Princeton University (record

number 11968). Formal written consent was obtained from each participant before they

started the experiment.

Experimental procedure and participant exclusion criteria

Participants were recruited online from Amazon Mechanical Turk. They received a base pay-

ment of $12 for completing the task, with a performance-based bonus of $0.15 per reward

point earned in three randomly-chosen games (one for each task complexity).

Participants went through a comprehensive instruction phase before starting the main task.

During the instruction, they were first introduced to the “icons”, and asked to build a few

examples. They were then explained the general rules of the experiment, including the com-

plexity levels and their respective reward probabilities (as in Table 1). Participants were tested

PLOS COMPUTATIONAL BIOLOGY Strategic combination of value learning and hypothesis testing in human reward learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010699 November 23, 2022 14 / 22

https://doi.org/10.1371/journal.pcbi.1010699


about these rules and probabilities with a set of multiple-choice questions. For each task com-

plexity level, they were given an example rule, and asked about the reward probability of a few

stimuli to test their understanding. Participants had to answer all questions correctly within a

fixed number of attempts (5 for questions on the general rules, and 3 for all the other tests). In

addition, they played a practice game in each complexity level with the rules informed (includ-

ing what dimensions were relevant and what features were more rewarding; this information

was not available in the main task, even in “known” games, where only the number of relevant

dimensions was informed, see details below). During the experimental games, participants

were required to respond within 5 seconds on each trial. Participants who did not pass the

comprehension tests or missed five consecutive trials at any time in the experiment were not

permitted to continue the experiment.

The main task consisted of 18 experimental games. Among them, half were “known”

games, in which participants were informed of the number of relevant dimensions (1, 2 or 3)

before the game started; the other half were “unknown” games. This corresponded to six game

types in total. Each participant played three games of each type in a randomized order. Each

game was comprised of 30 trials.

At the end of each game, participants were asked to report the rewarding feature for each

dimension through a multiple choice question, or indicate that this dimensions was irrelevant

to reward. They were also asked to rate their confidence level (0–100) in these judgements.

106 participants completed the entire experiment, out of which 4 were excluded from our

analyses due to poor performance (an overall reward probability less than 0.468, which was

two standard deviation below the group average).

Approximately optimal agent

It is computationally intractable to solve the optimal policy for this task. Therefore we trained

a deep Q-network (DQN) [39] on the task to approximate the optimal solution, and compared

participants’ performance with this well-trained DQN agent. Specifically, this DQN model

uses Bayes rule to update belief states, and deep RL to learn (or approximate) the optimal deci-

sion policy.

Computational models of human behavior

Feature-based reinforcement learning with decay model. The feature RL with decay

model maintains values (V) for each of the nine features (denoted by fi,j; i and j are indices for

dimensions and features respectively). At decision time, the expected reward (ER) for each

possible stimulus configuration c is calculated as the sum of its feature values:

ERðcÞ ¼
X

i

Vðfi;ciÞ; ð1Þ

where ci denotes the feature on dimension i of configuration c. For dimensions that are

unspecified in the configuration (i.e., those the computer will choose randomly), the model

uses the average value of all three features.

The choice probability is determined based on ER(c) using a softmax function, with β as a

free parameter:

PðcÞ ¼
eb�ERðcÞ

P
c0eb�ERðc

0Þ
: ð2Þ

Feature values are updated according to a Rescorla-Wagner update rule, with separate

learning rates for features that were selected by the participant (η = ηs) and those that were
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randomly determined (η = ηr). Values of features not in the current stimulus st are decayed

towards zero with a factor d 2 [0, 1]. ηs, ηr and d are free parameters.

Vtðfi;jÞ ¼
Vt� 1ðfi;jÞ þ Zðrt � ERðctÞÞ; if j ¼ sit

d � Vt� 1ðfi;jÞ; if j 6¼ sit

8
<

:
ð3Þ

where rt is the reward outcome (0 or 1) on trial t, and sit indicates the feature on dimension i of

st.
Bayesian rule learning model. The Bayesian rule-learning model maintains a probabilis-

tic belief distribution over all possible hypotheses (denoted by h). Note that the set of possible

hypotheses (the hypothesis space) depends on the current task complexity: in known games,

there are 9, 27 and 27 possible hypotheses in 1D, 2D and 3D games, respectively; in unknown

games, all 63 hypotheses are possible. After each trial, the belief distribution is updated accord-

ing to Bayes rule:

Pðhjc1:t; r1:tÞ / Pðrtjh; ctÞPðhjc1:t� 1; r1:t� 1Þ: ð4Þ

At decision time, the expected reward for each choice is calculated by marginalizing over the

belief distribution:

ERðctþ1Þ ¼
X

h

Pðhjc1:t; r1:tÞPðrtþ1jh; ctþ1Þ: ð5Þ

The expected reward is then used to determine the choice probability as in Eq 2.

We note that this model is not strictly optimal, even with no decision noise, as it maximizes

the expected reward on the current trial, but not the total reward over a game.

Random-switch serial hypothesis testing (SHT) model. The random-switch SHT model

assumes the participant tests one hypothesis at any given time. We do not directly observe

what hypothesis the participant is testing, and need to infer that from their choices. We do so

by using the change-point detection model in [26]. The basic idea is to infer the current

hypothesis (denoted by ht) from all the choices the participant has made and the reward out-

comes they received so far in the current game (together denoted by d1:t−1); see Supplementary

Methods in S1 Text for implementation details. Once we obtain the posterior probability dis-

tribution over the current hypothesis P(ht|d1:t−1), we can use it to predict choice:

Pðctjd1:t� 1Þ ¼
X

ht

PðctjhtÞPðhtjd1:t� 1Þ ð6Þ

In order to calculate P(ht|d1:t−1), we consider the generative model of participants’ choices.

First, we determine the participant’s hypothesis space: In “known” games, participants were

informed about the number of relevant dimensions, which limits the set of possible hypotheses

in these games. The way people interpret and follow instructions, however, may vary. Thus, we

parameterize the hypothesis space (i.e., people’s prior over all possible hypotheses) with two

weight parameters wl and wh (before normalization):

PðhÞ /

wl if DðhÞ < D

1 if DðhÞ ¼ D

wh if DðhÞ > D

8
>>><

>>>:

ð7Þ

Here, D(h) is the dimensionality of hypothesis h (how many rewarding features are in h), and

D is the informed number of relevant dimensions of the current game. If a participant strictly
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follows the instruction, wl = wh = 0, i.e., only hypotheses with the same dimensionality as the

instruction are considered; if the participant does not use the instruction information at all,

wl = wh = 1, i.e., all 63 hypotheses are considered to be equally likely. For “unknown” games,

the model uses the average P(h) of 1D, 2D and 3D “known” games to determine the prior

probability of 1D, 2D and 3D hypotheses.

The generative model of participants’ choice behavior is assumed to contain three parts: the

hypothesis-testing policy (whether to stay with the current hypothesis or switch to a new one),

the hypothesis-switching policy (what the next hypothesis should be when switching hypothe-

ses), and the choice policy given the currently tested hypothesis. The first two policies together

determine the transition from the hypothesis on the previous trial to the current one, and the

choice policy determines the mapping between the current hypothesis and the choice.

Following [26], we consider the following hypothesis testing policy: on each trial, the partic-

ipant estimates the reward probability of the current hypothesis. Using a uniform Dirichlet

prior, this is equivalent to counting how many times they have been rewarded since they

started testing this hypothesis. The estimated reward probability is then compared to a soft

threshold θ to determine whether to stay with this hypothesis or to switch to a different one:

PrðstayÞ ¼
1

1þ e� bstayðP̂ reward� yÞ
; ð8Þ

where P̂reward ¼
reward count þ1

trial countþ2
is the estimated reward probability, and βstay and θ are free param-

eters. If the participant decides to switch, they randomly switch to any other hypothesis

according to the prior over hypotheses specified in Eq 7 (i.e. the random hypothesis-switch

policy):

PðhtÞ ¼

PrðstayÞ; if ht ¼ ht� 1

1 � Pr stayð Þð Þ
PðhtÞP

h6¼ht� 1
PðhÞ

; if ht 6¼ ht� 1

8
>><

>>:

ð9Þ

Finally, we assume a choice policy where participants configure stimuli according to their

hypothesis most of the time, but with a lapse rate of λ choose any configuration randomly.

Value-based serial hypothesis testing model. The value-based SHT model is the same as

the random-switch SHT model, except that it uses a value-based hypothesis-switch policy. It

maintains a set of feature values updated according to the feature RL with decay model, as in

Eq 3 (but with a single learning rate), and calculates the expected reward for each alternative

hypothesis by adding up its constituent feature values, similar to Eq 1 but for h instead of c.
The probability of switching to ht 6¼ ht−1 is:

PðhtÞ ¼ 1 � Pr stayð Þð Þ
ebswitch�ERðhtÞ

P
h0 6¼ht� 1

ebswitch�ERðh0Þ
; ð10Þ

where βswitch is a free parameter.

Variants of the value-based SHT model. We considered several variants of the value-

based SHT model by modifying the hypothesis-testing policy and the choice policy of the base-

line value-based SHT model described above.

Not always testing a hypothesis. In the experiment, the participant could choose not to

select any feature, and let the computer configure a random stimulus. Many participants did

so, especially in the beginning of each game, potentially due to not having a good candidate

hypothesis in mind. To model this, we add a soft threshold on hypothesis testing: if the

expected reward of the best candidate hypothesis is below a threshold θtest, participants will be

PLOS COMPUTATIONAL BIOLOGY Strategic combination of value learning and hypothesis testing in human reward learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010699 November 23, 2022 17 / 22

https://doi.org/10.1371/journal.pcbi.1010699


unlikely to test any hypothesis:

PrðtestÞ ¼
1

1þ e� btestðmaxhðERðhÞÞ� ytestÞ
ð11Þ

βtest and θtest are additional free parameters of this model. This mechanism was applied to the

first trial of each game and at hypothesis switch points.

Alternative hypothesis-testing policy: Using reward probability information. In the

experiment, participants were informed of the reward probabilities for all game conditions

(Table 1). Our baseline model did not make use of this information. One way to use such

information is to consider a target reward probability RPtarget for the current hypothesis h. If

the hypothesis dimension D(h) is equal to or larger than the instructed dimension of a game

(in known games) D, the hypothesis should attain the highest possible reward probability if all

features in h are rewarding features so RPtarget = 0.8. However, if D(h)< D, the target should

be lower. For example, when testing the same one-dimensional hypothesis, participants should

expect a higher reward probability if they are in a 1D game (RPtarget = 0.8) compared to in a

3D game (RPtarget = 0.4). In “known” games, we therefore assumed that participants set their

thresholds θ for switching hypotheses according to this target reward probability, with a free-

parameter offset δ:

y ¼ RPtarget þ d ð12Þ

For “unknown” games, we assume participants use the average RPtarget of 1D, 2D and 3D

“known” games, such that RPtarget = 0.6, 0.733 and 0.8 for 1D, 2D and 3D hypotheses,

respectively.

Alternative choice policy: Selecting more features than prescribed by the hypothesis.

In the baseline model, participants’ choices are assumed to be aligned with their current

hypothesis, unless they lapse in their choice. In the experiment, however, we observed an over-

all tendency to select more features than instructed (Fig 2B). This was not surprising as there

was no cost to selecting more features. In fact, it was strictly optimal to always make selections

on all dimensions, as there was always a best feature within each dimension (at least equally

good as the other two), and holding all features fixed helps test the current hypothesis (the

computer randomly chooses features for any unselected dimensions, meaning that reward

attained could be due to those features and not the hypothesis tested). Thus, we assumed in

this alternative model that participants may select more features than their current hypothesis

ht. The probability for choices that are supersets of ht was determined by the difference in the

numbers of dimensions compared to ht, with a decay rate k as a free parameter:

PðctjhtÞ / ekðDðctÞ� DðhtÞÞ ð13Þ

In this model, participants could still lapse, meaning that all choices that are not supersets of ht
were equally likely, with probabilities that summed to λ.

Model fitting and model comparison

We fit the models to each participant’s data using maximum likelihood estimation. We used

the minimize function (L-BFGS-B algorithm) in Python package scipy.optimize as the opti-

mizer; each optimization was repeated 10 times with random starting points. Models were

evaluated with leave-one-game-out cross-validation: the likelihood of each game was calcu-

lated using the parameters obtained by fitting the other 17 games; the geometric average likeli-

hood per trial across all held-out games is reported (i.e., total log likelihood across all trials a
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participant played divided by number of trials and exponentiated, and then averaged over

participants).

Supporting information

S1 Fig. Additional behavioral results. (A, B) Same as Fig 2A and 2B but aggregated by known

v.s. unknown games. (C) Post-game responses to questions about the rewarding features in

each game condition. Kwn = known games, Unk = unknown games. After each game, partici-

pants were asked to report the rewarding feature for each dimension, or indicate this dimen-

sion as irrelevant to reward. Responses are classified into five categories. Correct feature:

correctly identifying a rewarding feature; Incorrect feature: incorrectly reporting a non-

rewarding feature as rewarding for a relevant dimension; Miss relevance: reporting a relevant

dimension as irrelevant; False positive: incorrectly reporting a rewarding feature for an irrele-

vant dimension; Correct rejection: correctly identifying an irrelevant dimension. (D, E, F) The

type of feature selection, the number of features changed in choices, and the type of choice

change as a function of trial index, broken down by game types. (D) The number of features

selected by participants was broken down into three types: correct, incorrect or false positive

(i.e. selecting a feature when that dimension was irrelevant), and summed across three dimen-

sions. Over the game, the number of correct features increased and the number of incorrect

features decreased, consistent across all game types and indicating learning. The trends were

mostly consistent between known and unknown games, except for 1D games: false positive

responses decreased in the known condition but stayed steady in the unknown condition.

These results are consistent with post-game questions (Fig 2D; participants were more likely to

make false-positive responses in 1D unknown games compared to 1D known games). Interest-

ingly, when games were more complex (e.g., 2D games), participants were unable to reduce

false positive responses over time even in the known condition. (E) The average number of fea-

tures changed from one choice to the next, for all trials (upper panel) and only for trials with a

choice change (lower panel). Overall, participants changed more features in their choice in the

beginning of a game, and this decreased over time. The pattern was mostly consistent across

game types, except for 1D games: the reduction was slower in the known condition compared

to the unknown condition. Specifically, in 1D known games, participants continued to change

their choices in the later part of the game, despite already obtaining a high reward rate, sug-

gesting that they were trying to further narrow down and find the exact rewarding feature,

potentially driven by the game instruction (one dimension was relevant). This is consistent

with a lower false-positive rate in 1D known games compared to 1D unknown games. In 3D

games, this pattern is reversed, likely because participants knew there was no need to narrow

down in 3D known games after achieving the maximal reward rate. (F) Choice change was

divided into five categories: adding features (e.g. red to red circle), dropping features (e.g. red

circle to red), switching within dimension (e.g. red circle to blue circle), switching across

dimensions (e.g. red to circle), and all other changes (any mixture of the previous four types,

e.g. red circle to blue). Among the five types, switching within dimension was the most com-

mon. There were very few occurrences of the mixture type (“Others”); whereas for a random-

choice policy, this would be the most common type. This suggests that participants tended to

make local, systematical changes in their choices, further supporting a serial hypothesis testing

process.

(PDF)

S2 Fig. Additional model fitting results. (A) Model fits broken down for each game type. (B)

The fitted prior probability for 1/2/3D hypothesis (x-axis) in different game types (subplots) in

the main value-based SHT model. In known games, participants had a higher prior probability
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for the hypotheses consistent with the task instructions (darker red bars). In unknown games,

more complex hypotheses were deemed a priori more likely.

(PDF)

S3 Fig. Learning curves for data and all model simulations. Top and fourth rows are identi-

cal to Figs 2A, 2B, 4B and 4C, respectively.

(PDF)

S4 Fig. Variants of the serial hypothesis-testing (SHT) model. (A) A diagram of the SHT

models compared in the main text. Different variants for each model assumption are presented

in colored boxes: in gray are the assumptions adopted by the baseline model; colors denote the

different variants tested. (B) Difference in average likelihood per trial between variants of the

SHT models and the baseline value-based SHT model. Each model except the full model is

only different from the baseline model by one assumption as noted in the label; the full model

adopts the better alternative in every assumption. Bar colors correspond to those in panel A,

except for the full model (in white). Specifically, the purple bar corresponds to the random-

switch SHT model. Error bars represent ±1 s.e.m. across participants.

(PDF)

S1 Text. Inference in the serial hypothesis-testing models.

(PDF)
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