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A B S T R A C T

We review the abstract concept of a ‘state’ – an internal representation posited by reinforcement learning the-
ories to be used by an agent, whether animal, human or artificial, to summarize the features of the external and
internal environment that are relevant for future behavior on a particular task. Armed with this summary re-
presentation, an agent can make decisions and perform actions to interact effectively with the world. Here, we
review recent findings from the neurobiological and behavioral literature to ask: ‘what is a state?’ with respect to
the internal representations that organize learning and decision making across a range of tasks. We find that
state representations include information beyond a straightforward summary of the immediate cues in the en-
vironment, providing timing or contextual information from the recent or more distant past, which allows these
additional factors to influence decision making and other goal-directed behaviors in complex and perhaps un-
expected ways.

Many computational theories of learning and decision-making rely
on the concept of a ‘state’ – a representation used by an animal, human
or artificial agent that describes the current situation of the agent
within an environment and which the agent uses to guide their beha-
vior. In reinforcement learning (RL), where a typical task is to choose
which of multiple possible actions to perform in order to obtain a
possible reward, the current state selectively includes all current and
past environmental information an agent treats as relevant for making
their decisions to act (Sutton and Barto, 1998). A state representation
thus encapsulates knowledge about the structure of a task, providing a
map of discrete states that follow one another given events that occur
during the task and the actions performed by the agent. While a state is
a central concept for RL algorithms, it is an idea that can be ambiguous
when applied to neurobiology and behavior. Here, we aim to orient
readers unfamiliar with RL to key concepts in the definition of state,
and discuss the assumptions (explicit and implicit) that arise when at-
tempting to determine the representation of state internal to an agent
acting within a task environment. Through this detailed discussion of
the formal concept of ‘state’ we thus trace some of the features of state
representations that underlie the complex behaviors of animals and
humans in various learning and decision making tasks.

1. Reinforcement learning: Algorithms for action towards a goal

RL provides a diverse set of algorithms all designed to solve the
problem of learning to obtain rewards (and avoid punishments) by
taking actions that influence future events in an environment (Sutton
and Barto, 1998). Distinct from supervised learning techniques, which
learn from labeled examples of the target behavior, RL algorithms are
designed to learn solely from trial-and-error experience of the outcomes
that are provided by the environment. This makes RL an appealing
framework for understanding the computational processes that support
learning and decision making in animals and humans across many
tasks; in both laboratory and natural environments, the task for a real
agent, is to learn what actions to take in each circumstance in order to
maximize reward. Reward in an RL setting can be flexibly defined, and
does not encompass solely food or other consumable goods, but may
track any signal provided by the environment that aligns with the goal
of the agent, including money, warmth, or reaching a safe enclosure.

RL algorithms are built around the concept of a ‘state’, which pro-
vides a summary of the current situation of the agent within the en-
vironment. In the simplest interpretation, and in many classic RL
models, the assumed state representation for a given task reflects the
explicit configuration of the environment, essentially a representation
of whatever unique cues or outcomes are known or designed to be
predictive of obtaining reward (Montague et al., 1996; Schultz et al.,
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1997; Suri and Schultz, 1999). However, in many tasks, there are fea-
tures of the environment that are not readily or continuously ob-
servable by a learning agent, yet they are critical for guiding appro-
priate behavior (Kaelbling et al., 1998; Wilson and Niv, 2012). For
example, during a task in which a brief cue at the start of a trial in-
dicates whether a later action (e.g., a lever press) will be rewarded or
not, the contextual information provided by the cue should be included
as part of the state at the time of lever presentation even if the cue is no
longer observable at that time. Further, there may be internal variables
– satiety, fatigue – that are also relevant for describing the current si-
tuation of the agent and may factor into the state representation of a
task (Berridge, 2004). Conversely, in more complex tasks as well as in
many natural environments, there are numerous features that may be
salient, yet are irrelevant for task performance (Niv et al., 2015). For
the sake of efficiency, such irrelevant features should not be part of a
state representation designed for learning and decision making in such
a task. The state representation is therefore not trivial, and under-
standing learning across diverse settings will be incomplete without
understanding the processes by which state representations are formed
(Wilson et al., 2014).

Establishing what state representation is used by an animal to guide
behavior during learning requires understanding what aspects of the
environment, both external and internal, the animal is treating as re-
levant to achieving their immediate goal. What are the characteristics
or limitations, if any, of the state representations used by real agents
acting in real environments? And how do real agents acquire a state
representation for a task they have never experienced before? In the
following section, we review the theoretical basis for the concept of a
‘state’ in reinforcement learning theory, and use this theory to trace the
features of hidden state representations that support learning and de-
cision making across a range of tasks. Drawing on both neurobiological
and behavioral evidence, we then uncover features of state re-
presentations that support reward prediction and prediction-error sig-
naling, and survey the implications of these state representations for
theories of learning and decision making.

2. Defining a ‘state’: states as summaries over relevant history

Reinforcement-learning problems are formulated within the general
framework of Markov decision processes (MDPs; Bellman, 2013;
Puterman, 2014). MDPs frame the problem of interacting with an en-
vironment in order to achieve a goal, where the goal in RL is typically to
maximize the accumulated reward. Within the setting of a task, the
environment provides cues of various types to the RL agent: these are
the observations. In addition, the environment may yield an outcome,
such as a reward. In turn, the agent can influence the environment by
executing actions, in the hope of controlling the subsequent environ-
mental outcomes in line with its reward-maximizing goal. The full se-
quence of observations, outcomes and actions for each moment in time
up until the present is referred to as the history, as it provides a com-
plete description of the observable events that have occurred during the
task (Fig. 1).

In this setting, the environment state specifies the current config-
uration of the task: it summarizes the immediate observation and out-
come, and specifies the mapping from the current state to its successor
state, perhaps dependent on variables that are not observable to the
agent, as well as the agent’s action. Formally, this mapping is captured
by a transition matrix – the probability of transitioning to each possible
state given an initial state and action. Note that action here is very
broadly defined: waiting, or a decision not to move, may also be con-
sidered an action. Moreover, state transitions need not display any
action dependence in that several possible actions might all result in a
transition to the same state. For instance, the probability of a cloudy sky
transitioning to rain is independent of any action an agent may take. In
general, both state transitions and outcomes are stochastic (that is,
probabilistic), such that the same action, executed in separate visits to

the same state may result in a different subsequent state and/or out-
come. Further, the environment state may depend on hidden variables
that do not directly produce an observation that is available to the
agent. For example, the probability of a cloudy sky transitioning to
snow depends on a particular environmental state of temperature,
pressure and humidity that may not be sensed directly by the agent,
even though the resulting precipitation is readily observed.

Obviously, an agent can only base its decisions on an internal esti-
mation of the current environmental state – the agent state – which it
must infer without knowledge of the true generative properties of the
environment. For the agent, constructing a Markov state representation
of a task thus forms the bedrock for learning to act within a given en-
vironment. Given an internal representation of the state, the RL fra-
mework suggests various algorithms that learn the value of each state,
defined as the cumulative future reward an agent can expect to receive
when starting from that state and acting according to a given policy (i.e.
rule for deciding between candidate actions). These algorithms com-
prise of learning rules for iterative updating of said state values through
experience, so that reward outcomes that follow from a particular state
accrue in the value of that state. RL algorithms also allow an agent to
directly learn an action-selection policy for each state. A critical pre-
requirement for using RL is therefore for the agent to represent in-
ternally their current state. This state is what the agent will use to bind
together previous experiences of the same situation, yielding reward
predictions (values) that guide decisions about future action (policies).

Importantly, in an MDP, the probability of the environment tran-
sitioning to any successor state depends only on the current environ-
ment state and chosen action, and not on past states. For instance, when
driving to work, the probability of getting to work on time given a
certain action (e.g., going right or left at an intersection) depends on
your current location (i.e., the current state), and not on how you ar-
rived there. The conditional independence of transition probabilities at

Fig. 1. The agent-environment interaction in RL. Reinforcement learning
problems are defined given an agent, or learner, interacting with an environ-
ment. At each moment, the agent obtains observations from the environment,
and decides which action it wishes to perform in order to influence the future
state of the environment, potentially eliciting a reward. The generative state of
the environment governs the possible observations, rewards and future states
given the actions of the agent, and may comprise of multiple variables that
govern the structure of the task. The agent has access to observations, but not
necessarily to the true underlying generative state of the environment, as not all
variables governing the structure of the task must be observable. Thus, the
agent must infer a state representation – the agent state – that comprises all
environment features it considers relevant for reaching their current goal.
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the current state from all previous states and actions is known as the
Markov property. For the Markov property to hold, the current state
must therefore encompass all the information determining the prob-
ability of the next state transition. For instance, in all likelihood the
probability of getting to work on time will also depend on the current
time, and whether there are road closures – as these aspects are part of
the environment state, they should also be included in your internal
agent state as you decide what route to take. This so-called ‘memory-
less’ property of Markov state representations, in which the current
state is sufficient to determine the probability of future events, is cen-
tral to RL algorithms, as it allows local learning that does not depend on
history.

Formally, states are defined as equivalence classes over history
(Minsky, 1967). As previously mentioned, history includes the entire set
of environmental events, including outcomes, as well as all previous
actions undertaken by the learning agent up until the current moment.
History is not restricted to a single task; in theory, the history of the
agent encompasses all experience and actions. Two or more histories
form an equivalence class if, from the current moment forward, the
agent responds to the subsequent sequence of events with exactly the
same actions. To make this definition more concrete, consider the ex-
ample of a GO/NO-GO task in which a cue at the start of a trial indicates
whether a lever press will be rewarded or not (Fig. 2). If the cue is
green, pressing the lever will be rewarded. If the cue is red, not enga-
ging with the lever will lead to reward. Ideally, the internal state of the

animal when contemplating the next action will separate the pre-
sentation of the lever into distinct states according to the past experi-
ence of observing a green or red cue, even though the cue is no longer
present. That is, presentation of the lever for action should be treated as
two different states based on the history of the environment, as the
agent should respond to these two sequences of events with different
actions. Conversely, all trials with a green cue should be classified to
the same state regardless of the animal’s location at the time of lever
presentation (and therefore the retinal input of the lever), the elapsed
time between the cue and the insertion of the lever, or the cues that
preceded it. Between these extremes however, there are intermediate
cases: should the fact that the previous trial was not rewarded (due to
choosing an incorrect action) be part of the current state? And even if
the true generative properties of the environment suggest that it
shouldn’t, is it?

The agent state and the environment state may not align, in that
they may contain distinct subsets of information, though in many
simple tasks it is assumed that they are equivalent. An agent state that
accurately tracks the true environment state will naturally provide an
accurate basis for learning. However, any approximation that obeys the
Markov property will allow learning using RL algorithms. How closely
the agent state hews to the true environment state limits how close an
agent can approach optimal behavior in a task. For example, in the GO/
NO-GO task of Fig. 2, an agent that correctly represents the occurrence
of a light prior to the insertion of the lever, but fails to distinguish

Fig. 2. Internal state representations constructed by an agent to solve a learning task. Top: A simple task in which the color of a light cue indicates whether an
agent should engage with a lever when it is presented after a variable delay. A green light indicates engaging with the lever will produce a reward and not engaging
will lead to no reward delivery, whereas a red cue indicates reward will be delivered only for not engaging with the lever and not delivered otherwise. The history of
experience consists of all observable events: the entire set of cues, actions and outcomes (here, reward or no reward) for every timepoint throughout the task. Middle:
the environment state is the true underlying state of the task, and contains all elements necessary for generating the events during the task (i.e. the ‘rules’). As such,
the environment state contains all features that are relevant for obtaining reward, in this case the current event in the trial, and the color of the cue prior to the lever.
The environment state may also contain various features that are not relevant to the immediate goal of the agent, such as the day of the week (which perhaps
determines whether rewards are given at all, or the test is in extinction). Bottom: The agent state can include different features and still provide a basis for learning.
For example, the agent may represent the states of the task by tracking only the immediately observable event in the environment (top row). In this case, they
represent a single ‘lever’ state on all trials, and need to learn a policy to guide action selection when in this one state. This state representation is adequate for a win-
stay, lose-shift policy as in this sequence. Of course, given the true structure of the task, this policy may not be optimal in attaining maximal reward. Alternatively, the
agent may include many distinct features, including features from past experience in their internal representation of the state (bottom row). Here, the lever
presentation is represented by two distinct states (as is appropriate in this environment), separated according to whether they were preceded by a green or red light.
However, there are features of the true state of the environment that the agent does not represent (i.e., day of the week). In addition, in the illustration, the agent
includes task-irrelevant information in their representation of the current state of the task: unbeknownst to the agent, the generative properties of the environment
are such that neither the delay between cue and lever presentation, nor the outcome of the previous trial, influence the likelihood of obtaining reward on each trial.
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between red and green, will think the environment is more stochastic
than it actually is. Conversely, an agent that represents many more
features of the environment than are actually predictive of reward, such
as the precise temperature in the room and the weather outside at the
time of the lever, may learn accurately but much more slowly. Thus,
grouping experience into a state representation useful for learning in a
particular task requires the agent to be sensitive only to information
from the environment that is relevant for their current goal. For ex-
ample, if on each trial a 10 s cue is followed immediately by a reward,
the onset of the cue should be recognized by a reward-seeking agent as
a transition to a single ‘reward is forthcoming’ state. This is despite the
fact that no two repetitions of the cue are truly identical; at the very
least, each experience differs in the history of experience leading to that
event (not to mention other perceptual differences). If each cue were
treated as a distinct state, true to the full dependence of each occur-
rence on its history, learning about past states could not be used to
guide future decisions as states would never be revisited. A critical step
for tracking the current state is thus determining how similar two ex-
periences need to be in order to be classified as the same state, which
basically determines the extent of generalization of learning from one
situation to another.

3. Inferring states in partially observable environments

Closely related to consideration of what comprises the state for a
learning agent is the

concept of internal models in partially observable environments, in
which the true generative state of the environment is hidden from the
agent and must be inferred from observable events that occur during a
task (Kaelbling et al., 1998; Rao, 2010). That is, in this case, a hidden
state comprises of a set of features, some observable and some not, that
determine the transitions between states given the agent’s actions. An
observation model describes the probabilistic structure or rules that
govern the emission of observations given the true hidden state. The
observation model also depends on the capabilities of the agent: while a
cue may indicate a reward is imminent in a given environment state,
this cue becomes an unobservable feature if the agent is blind. In such a
setting, inferring the current hidden state of the environment involves
parsing a sequence of observations (i.e. history) according to an internal
model of how those observations are generated by the underlying se-
quence of hidden states.

Environments in which delays separate predictive cues from their
associated outcomes inevitably become partially observable; in this
setting, events are determined by timing processes that are not ob-
servable (unless a clock is present). The agent must rely on internal
timing processes, and tracking the current environment state usually
requires a representation of a (possibly short) history of the sequence of
events and actions that are not observable at the current moment. A
simple example of this is trace conditioning, in which a brief cue is
followed by a reward after some finite, possibly variable, delay. Even if
the cue is fully observable, the intervening delay to reward makes the
underlying state at the time of the reward partially observable, through
its dependence on the now-unobservable history of the environment. In
particular, the reward is predicted with some probability after obser-
ving a cue (in the recent past), but with another probability after ob-
serving a reward (that is, in the inter-trial interval), and it behooves the
agent to represent in its internal state the most recently observed event
(cue or reward). In general, then, the summary representation provided
by the state must be internally maintained across different timescales in
the context of different goals, recruiting diverse neural timing and
memory processes to support learning and decision making across a
range of tasks (Paton and Buonomano, 2018).

In sum, when parsing the definition of state as discussed above,
there are three components that stand out as important for under-
standing animal and human behavior during learning and decision
making. First, past experience leading to the current moment can

influence the current state of the agent, and thus their actions going
forward. This potentially extends the internal state representation of a
task beyond immediate events, beyond the current trial and even be-
yond the current task. Importantly, the history of the agent is not
limited to events in the environment, but encompasses internal events
as well as previous actions. Second, the ability to infer hidden structure
in the constellation of past and present experience is crucial for building
a state representation that aligns the external and internal states ap-
propriately for the current task. Last, state representations are in-
trinsically goal-dependent. Whether an agent considers distinct histor-
ical experiences as equivalent, and thus treats them as a single state in
the current moment, depends critically on the goal of the agent going
forward.

4. Uncovering hidden state representations in neurobiology and
behavior

The features of experience that comprise the state representation an
agent uses to perform a certain task will critically constrain what fea-
tures of the environment will accrue value (that is, become predictors of
rewarding outcomes) and thus modulate decisions about actions in that
task. That is, the components of the state are what the agent learns
values for. In artificial scenarios, it can be relatively straightforward to
determine what the most efficient state representation would be for
solving a given learning task (but not always). In such settings, in which
the goal of the agent is determined a priori as part of the design of the
learning problem, it is possible to prescribe that the agent has access to
the necessary signals from the environment and is able to disambiguate
them clearly. That is, the agent can be endowed with knowledge of
which subset of environmental features might be relevant for solving
the task (if not which individual feature specifically), thus constraining
the size of the state representation of the task, which ensures that
learning will be efficient.

However, when discussing learning in animals and humans, the
critical elements we outlined above for defining a state re-
presentation—how a state representation used by an animal or human
specifically depends on the external and internal history and the goal of
the agent—is ultimately unknown to us as experimenters. Nevertheless,
we can trace the dependence of both behavior and neural activity on
the history of both the task and the subject’s own behavior, in order to
uncover the summary features of experience that the subject is using as
a state representation to guide learning.

4.1. Hidden state representations in the neurobiology of reward prediction

A number of now classic findings have identified phasic responses
from dopamine neurons in the midbrain as correlates of the reward
prediction error signal posited by reinforcement learning theories (e.g.,
Eshel et al., 2015; Schultz et al., 1997). This correspondence has been
influentially modeled using temporal difference reinforcement learning
(TDRL; (Niv, 2009)), typically assumed to operate on a state re-
presentation in which all relevant information is observable at each
sequential timepoint (Sutton and Barto, 1998). This assumption implies
that information about the current state is available to the agent con-
tinuously and unambiguously at each point in time. Given such a state
representation, TDRL is able to update state value estimates using a
prediction error signal computed on the difference between state value
and reward at successive timepoint states (thus temporal difference).

The assumption that all relevant information is fully observable to
the agent is frequently incorrect, in even the simplest of tasks. For in-
stance, delays between predictive cues and rewarding outcomes in-
troduce into the agent’s state representation an internal model of
timing, and its associated uncertainty. The fundamental role of internal
timing in state representations for learning is evident in the sensitivity
of dopamine prediction error signals to the timing of rewards. In tasks
in which a delay intervenes between a predictive cue and reward
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delivery, it is enough to remember the previous cue to predict that re-
ward is coming. However, it turns out that dopaminergic activity is
sensitive also to when reward should arrive. For example, delaying a
reward (or omitting it altogether) results in suppression of dopamine
firing (i.e. a negative prediction error) at (or slightly after) the expected
time of reward even when no external cue marks this timepoint
(Hollerman and Schultz, 1998). State representations for tasks with
delay between predictive events and rewards must therefore include a
model of elapsing time, in order to propagate the pre-delay (historical)
state of the environment forward through the delay during which no
observable cue remains to signal the state.

Typically, TDRL models use a temporal representation that consists
of a sequence of momentary states (one state per timepoint; called a
tapped delay-line) to propagate the history of the environment (i.e. the
cue) forward in time, with separate reward predictions learned for each
timepoint state (Montague et al., 1996). Such a temporal representation
essentially assumes the state representation of the task includes a
timing signal that ‘remembers’ the onset of the past cue perfectly and
reliably tracks the elapsing duration from that time until reward de-
livery. More complex forms of temporal representation have been
combined with TDRL to address fundamental properties of timing in
reward learning, though many of the assumptions of the learning rule of
TDRL (i.e., that values are aggregated and cached as a property of
states, rather than computed online using a model of the state transi-
tions in the environment) have typically been left intact (Ludvig et al.,
2008, 2012). Whatever the precise nature of the temporal representa-
tion an agent recruits for their internal state, timing processes that act
as a model of the past are a critical component of state estimation and
thus a fundamental component of reward prediction and learning
(Gallistel and Gibbon, 2000; Kirkpatrick, 2014).

A number of recent findings confirm that timing processes form a
critical, and flexible, component of the state representations that shape
reward prediction error computations in dopamine circuits. While
TDRL models typically suppose a relatively precise state timing signal,
at least one study has found only weak dependence of dopamine pre-
diction errors on the delay to reward after learning, suggesting minimal
erosion of reward predictions over elapsing delays (Fiorillo et al.,
2008). A more recent study demonstrated that the profile of dopamine
prediction errors at the delivery of a time-varying reward critically
depends upon the experienced reliability of reward delivery throughout
the task (Starkweather et al., 2017). This latter finding is strong evi-
dence that features of past experience that go beyond directly ob-
servable cues shape the state representation within which reward pre-
dictions are learned. Interestingly, dopamine signals also report
prediction errors related to the timing of relatively uninformative
events, for instance, the length of the inter-trial interval, indicating that
timing processes are recruited widely throughout a task, and not just
during anticipation of an impending reward (Bromberg-Martin et al.,
2010; Nomoto et al., 2010).

Beyond dopamine, neural activity in the striatum dynamically ad-
justs to span the temporal interval relevant for reward prediction,
confirming that duration is flexibly represented (Mello et al., 2015).
Importantly, recent work demonstrated that the temporal precision of
dopamine reward prediction errors, and thus presumably the temporal
component of state representations for reward prediction, depends on
neural circuitry involving the ventral striatum (Takahashi et al., 2016).
Finally, judgements about duration on the seconds-long timescale are
causally impacted by perturbations of dopamine activity, suggesting
dopamine activity itself can modulate the behavioral estimation of the
current state (Soares et al., 2016). Together, these findings support
theoretical work that has pointed to the critical interplay between
timing and state inference in the neural computation of dopamine re-
ward prediction errors (Daw et al., 2006; Langdon et al., 2018).

As mentioned, state representations for reward learning should in-
clude any information deemed by an agent as relevant for the task of
predicting rewards and acting to attain them. Given that dopamine

neurons report prediction errors associated with transitions between
such states, task features that influence dopamine signals (beyond the
reward itself) can be considered as components of the state re-
presentation the animal is using. For instance, temporally extended
dopamine responses to perceptually ambiguous stimuli are consistent
with inference about the likely hidden state of the task on the basis of
the gradually resolved cue (Nomoto et al., 2010; Lak et al., 2017).
Further, changes in the identity of equally preferred rewards lead to
phasic dopamine responses despite no change in reward value
(Takahashi et al., 2017), suggesting a predictive model underlying
dopamine firing that operates over multiple dimensions (such as reward
identity, not only reward amount; Langdon et al., 2018; Lau et al.,
2017).

4.2. Hidden state representations in reward-guided behaviors

An essential window to the hidden state representations that guide
reward learning and decision making is provided by behavior itself. In
general, there is not a unique state representation that affords learning.
As such, the appropriate state representation is usually assumed to be
the minimal representation of the task that ensures actions can attain
the assumed goal. This relates to the definition of equivalence classes
introduced earlier: if two distinct sets of experience (histories) are
succeeded by the same events and outcomes, then the agent should treat
these histories as one and the same state. However, many apparently
equivalent circumstances are clearly not treated as such by animals
engaged in a range of tasks, leading to a rich diversity of behaviors even
in controlled laboratory environments.

The interplay between timing and reward-driven behaviors again
highlights the role of temporal representations in the hidden state re-
presentation of a task. It has long been known that the pattern of be-
havioral responses (for example, licking) dynamically evolves in the
delay between a predictive event, such as the onset of a cue, and a
reinforcer, such as a drop of juice, in a way that is strongly influenced
by previous experience of the duration of this interval (Gibbon, 1977;
Gallistel and Gibbon, 2000; Balsam et al., 2010). Further, delay dis-
counting, in which choice preference between distinct cues is modu-
lated by the expected delay to the associated outcome, attests to the
fundamental role of temporal delay in valuation. Temporal discounting
behavior is typically modeled by assuming a discounting parameter that
controls the rate at which outcomes are devalued by time. Yet the
discounting of outcomes according to delay is also susceptible to task
features beyond the duration of the pre-reward interval: animal pre-
ference in intertemporal choice is also sensitive to post-reward delays,
the delivery of additional rewards in the inter-trial interval as well as to
the broader framing of the task (Blanchard and Hayden, 2015;
Blanchard et al., 2013; Carter and Redish, 2016; Wikenheiser et al.,
2013; Williams et al., 2017). Further, the influence of temporal delay on
reward-guided behavior indicates animals and humans learn about the
distribution of, and relationship between, the delay to different rewards
in a task, consistent with the explicit learning of temporal durations as a
property of the state representation of a task (De Corte et al., 2018;
McGuire and Kable, 2013, 2015; Williams et al., 2017). Understanding
states as summaries over history thus naturally recruits the concept of a
timescale at which the state maintains a representation of previous
events: these results imply that the timescale at which a state sum-
marizes history is a malleable, and thus learnable, part of a state re-
presentation.

Beyond timing, context more broadly is an important component of
state representations. For instance, in reversal learning experiments,
rapid reversals are presumably possible because the animal encodes the
phase of the experiment (A is rewarded or B is rewarded) as part of the
state (Wilson et al., 2014). Representing alternate configurations of a
reversal task as separate states allows inference about the current
hidden reward contingencies to inform decision making during the task
(Costa et al., 2015). This idea of latent ‘context’ states was tested in an
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experiment in which pre-established fear conditioning was ex-
tinguished gradually (starting the “extinction” phase with several in-
stances in which the cue was still paired with a foot shock, but with
decreasing frequency). Gradual extinction was found to be more ef-
fective at ultimately reducing fear of the cue than a standard extinction
paradigm where the cue was never followed by shock in the extinction
phase, even though the animal actually experienced more shocks in the
former case (Gershman et al., 2013; Shiban et al., 2015). These counter-
intuitive findings could be explained by the animal forming a hidden
state representation that grouped training and extinction into one
context state based on the similarity between those two phases in the
gradual extinction group, but separating training (the “dangerous”
state) from extinction (the “safe” state) in classic extinction. This latter
separation into two states would prevent learning in extinction from
accessing and modifying the value of the “dangerous” state, thereby
leading to the return of fear later in the test phase. In contrast, under
the gradual extinction paradigm, because of the gradual decrease in
shock frequency, the animal might group all its experiences into a
single state and unlearn the prediction of shock during the extinction
phase, resulting in minimal return of fear in the test phase.

5. Conclusion: uncovering the ‘state’ as the basis for learning and
decision making

Oftentimes the state representation for a given task is considered a
property of the world, as it contains the ‘rules’ by which the environ-
ment evolves given the actions of the agent. Accordingly, when mod-
eling behavior on a learning task, one usually constructs a state re-
presentation that captures the known properties of the environment a
priori, ignoring the fact that the agent may not know what information
is necessary for solving the learning problem, or this information may
not be available to the agent at the appropriate time to guide their
decisions to act.

The central problem for translating concepts from reinforcement
learning in artificial environments to understanding learning in animals
and humans is that a real agent must first learn the structure of the
environment in order to know what to include in its state representa-
tion. In studies of decision making in humans, this is a major goal of the
instructions phase, however, in animals, this learning must also proceed
by trial and error. Moreover, the requisite information for decisions
may not be observable, therefore an agent can only base its actions on
an internal estimation of the current state and its associated properties.
The requirement to determine the current state in order to make deci-
sions and learn effectively poses a particular challenge in environments
in which the associative structure between predictors (such as cues) and
rewards is hidden. In such settings, learning which features of past
experience provide an accurate yet succinct summary relevant for fu-
ture action is the key to building a useful state representation. Even
when all information necessary to determine the current state is clearly
observable in the environment, not all features may receive the same
attentional focus, biasing learning towards some elements of the en-
vironment over others in a manner that can be highly variable across
individuals and the duration of the task (Leong et al., 2017). Ultimately,
how an agent behaves in the environment depends on what information
influences the neurobiological and behavioral processes that support
learning and decision making. Theories directed towards understanding
how coherent hidden state representations are formed through experi-
ence are thus critical for understanding how the computations of
learning and decision making are structured in real agents.

We do not yet have a general theory of how animals and humans
come to appropriately represent the diverse tasks in which they routi-
nely engage. By tracing the dependence of actions on the latent struc-
ture of a task environment we can uncover the dimensions extracted
and exploited by real agents to make decisions in the pursuit of re-
wards. The concept of a state representation is eminently useful for
applying theories from reinforcement learning to account for both

reward-evoked neural activity and reward-guided behaviors. Theories
of learning and decision making that purport to explain behavioral
processes in real agents must therefore expand to address questions of
how a state representation for any given task is itself learned through
experience, why one state representation of a task comes to be used
over other alternatives, and what features of the internal and external
environment dominate state representations. Answering these questions
about how an agent forms a summary of relevant history to support
future reward-guided behavior is fundamental for understanding
learning and decision making in the diverse tasks in which animals and
humans routinely engage.
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